Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity

Abstract Identifying structure underlying high-dimensional data is a common challenge across scientific disciplines. We revisit correspondence analysis (CA), a classical method revealing such structures, from a network perspective. We present the poorly-known equivalence of CA to spectral clustering...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Alje van Dam, Mark Dekker, Ignacio Morales-Castilla, Miguel Á. Rodríguez, David Wichmann, Mara Baudena
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4fb9c06fecf040749cdc0863644aa633
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4fb9c06fecf040749cdc0863644aa633
record_format dspace
spelling oai:doaj.org-article:4fb9c06fecf040749cdc0863644aa6332021-12-02T17:39:23ZCorrespondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity10.1038/s41598-021-87971-92045-2322https://doaj.org/article/4fb9c06fecf040749cdc0863644aa6332021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87971-9https://doaj.org/toc/2045-2322Abstract Identifying structure underlying high-dimensional data is a common challenge across scientific disciplines. We revisit correspondence analysis (CA), a classical method revealing such structures, from a network perspective. We present the poorly-known equivalence of CA to spectral clustering and graph-embedding techniques. We point out a number of complementary interpretations of CA results, other than its traditional interpretation as an ordination technique. These interpretations relate to the structure of the underlying networks. We then discuss an empirical example drawn from ecology, where we apply CA to the global distribution of Carnivora species to show how both the clustering and ordination interpretation can be used to find gradients in clustered data. In the second empirical example, we revisit the economic complexity index as an application of correspondence analysis, and use the different interpretations of the method to shed new light on the empirical results within this literature.Alje van DamMark DekkerIgnacio Morales-CastillaMiguel Á. RodríguezDavid WichmannMara BaudenaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Alje van Dam
Mark Dekker
Ignacio Morales-Castilla
Miguel Á. Rodríguez
David Wichmann
Mara Baudena
Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
description Abstract Identifying structure underlying high-dimensional data is a common challenge across scientific disciplines. We revisit correspondence analysis (CA), a classical method revealing such structures, from a network perspective. We present the poorly-known equivalence of CA to spectral clustering and graph-embedding techniques. We point out a number of complementary interpretations of CA results, other than its traditional interpretation as an ordination technique. These interpretations relate to the structure of the underlying networks. We then discuss an empirical example drawn from ecology, where we apply CA to the global distribution of Carnivora species to show how both the clustering and ordination interpretation can be used to find gradients in clustered data. In the second empirical example, we revisit the economic complexity index as an application of correspondence analysis, and use the different interpretations of the method to shed new light on the empirical results within this literature.
format article
author Alje van Dam
Mark Dekker
Ignacio Morales-Castilla
Miguel Á. Rodríguez
David Wichmann
Mara Baudena
author_facet Alje van Dam
Mark Dekker
Ignacio Morales-Castilla
Miguel Á. Rodríguez
David Wichmann
Mara Baudena
author_sort Alje van Dam
title Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
title_short Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
title_full Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
title_fullStr Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
title_full_unstemmed Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
title_sort correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4fb9c06fecf040749cdc0863644aa633
work_keys_str_mv AT aljevandam correspondenceanalysisspectralclusteringandgraphembeddingapplicationstoecologyandeconomiccomplexity
AT markdekker correspondenceanalysisspectralclusteringandgraphembeddingapplicationstoecologyandeconomiccomplexity
AT ignaciomoralescastilla correspondenceanalysisspectralclusteringandgraphembeddingapplicationstoecologyandeconomiccomplexity
AT miguelarodriguez correspondenceanalysisspectralclusteringandgraphembeddingapplicationstoecologyandeconomiccomplexity
AT davidwichmann correspondenceanalysisspectralclusteringandgraphembeddingapplicationstoecologyandeconomiccomplexity
AT marabaudena correspondenceanalysisspectralclusteringandgraphembeddingapplicationstoecologyandeconomiccomplexity
_version_ 1718379820054740992