Correspondence analysis, spectral clustering and graph embedding: applications to ecology and economic complexity
Abstract Identifying structure underlying high-dimensional data is a common challenge across scientific disciplines. We revisit correspondence analysis (CA), a classical method revealing such structures, from a network perspective. We present the poorly-known equivalence of CA to spectral clustering...
Guardado en:
Autores principales: | Alje van Dam, Mark Dekker, Ignacio Morales-Castilla, Miguel Á. Rodríguez, David Wichmann, Mara Baudena |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4fb9c06fecf040749cdc0863644aa633 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Clustering Vertex-Weighted Graphs by Spectral Methods
por: Juan-Luis García-Zapata, et al.
Publicado: (2021) -
Hierarchical information clustering by means of topologically embedded graphs.
por: Won-Min Song, et al.
Publicado: (2012) -
Knowledge Graph Embedding Technology: A Review
por: SHU Shitai, LI Song+, HAO Xiaohong, ZHANG Liping
Publicado: (2021) -
Leveraging graph-based hierarchical medical entity embedding for healthcare applications
por: Tong Wu, et al.
Publicado: (2021) -
Correspondence: On the bonding in ligand-protected gold clusters
por: Henrik Grönbeck
Publicado: (2017)