Mining the sequential patterns of water quality preceding the biological status of waterbodies

We have implemented a specific data mining process to explore the relationship between biological indices and physico-chemical pressures in rivers. Data were collected in the framework of the French National monitoring network set up to assess the ecological status of rivers under the European Water...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Corinne Grac, Xavier Dolques, Agnès Braud, Michèle Trémolières, Jean-Nicolas Beisel, Florence Le Ber
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/4fc70d74ee7b4513a8db80f7f8df190b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4fc70d74ee7b4513a8db80f7f8df190b
record_format dspace
spelling oai:doaj.org-article:4fc70d74ee7b4513a8db80f7f8df190b2021-12-01T04:58:47ZMining the sequential patterns of water quality preceding the biological status of waterbodies1470-160X10.1016/j.ecolind.2021.108070https://doaj.org/article/4fc70d74ee7b4513a8db80f7f8df190b2021-11-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1470160X21007354https://doaj.org/toc/1470-160XWe have implemented a specific data mining process to explore the relationship between biological indices and physico-chemical pressures in rivers. Data were collected in the framework of the French National monitoring network set up to assess the ecological status of rivers under the European Water Framework Directive (WFD). Chemical parameters and biological indices were collected regularly from 1.781 locations in metropolitan France from 2007 to 2013. The sequential pattern mining process generates closed partially ordered patterns representing a succession of physico-chemical events that precede a given biological index in a given status, validated using a subset of data. This paper focuses on the patterns and their occurrence. We showed that biological statuses depend on these temporal successions of alterations and not only on the last alterations. The physico-chemical statuses of water bodies usually appeared to be higher than their biological statuses, suggesting synergism between toxicants and/or an additive impact of other stressors related to hydromorphology or hydrology. Patterns found in the highest biological status for the biological indices based on macroinvertebrates, diatoms, macrophytes or fish, were characterised by the constancy of a high physico-chemical status over time. By contrast, before indices based on macroinvertebrates and macrophytes, two types of patterns were observed for bad biological status: (1) a chronic multi-pressure pattern, in which pressure categories such as nitrates, pesticides and other organic hydrocarbons, in moderate, poor or bad status, repeated themselves several times over time, or (2) a single occurrence of a degraded pressure category, such as one moderate nitrogen, excluding nitrate, or one poor oxidizable organic matter, among other pressure categories in good status. Extracting such patterns is a promising solution both to disentangle the effects of the different stressors on water quality, and to identify the key temporal sequences among them in a context of multi-stress conditions, which is a challenge currently facing the WFD.Corinne GracXavier DolquesAgnès BraudMichèle TrémolièresJean-Nicolas BeiselFlorence Le BerElsevierarticleRiversWater qualityBiological statusData miningTemporal patternsPhysico-chemical statusEcologyQH540-549.5ENEcological Indicators, Vol 130, Iss , Pp 108070- (2021)
institution DOAJ
collection DOAJ
language EN
topic Rivers
Water quality
Biological status
Data mining
Temporal patterns
Physico-chemical status
Ecology
QH540-549.5
spellingShingle Rivers
Water quality
Biological status
Data mining
Temporal patterns
Physico-chemical status
Ecology
QH540-549.5
Corinne Grac
Xavier Dolques
Agnès Braud
Michèle Trémolières
Jean-Nicolas Beisel
Florence Le Ber
Mining the sequential patterns of water quality preceding the biological status of waterbodies
description We have implemented a specific data mining process to explore the relationship between biological indices and physico-chemical pressures in rivers. Data were collected in the framework of the French National monitoring network set up to assess the ecological status of rivers under the European Water Framework Directive (WFD). Chemical parameters and biological indices were collected regularly from 1.781 locations in metropolitan France from 2007 to 2013. The sequential pattern mining process generates closed partially ordered patterns representing a succession of physico-chemical events that precede a given biological index in a given status, validated using a subset of data. This paper focuses on the patterns and their occurrence. We showed that biological statuses depend on these temporal successions of alterations and not only on the last alterations. The physico-chemical statuses of water bodies usually appeared to be higher than their biological statuses, suggesting synergism between toxicants and/or an additive impact of other stressors related to hydromorphology or hydrology. Patterns found in the highest biological status for the biological indices based on macroinvertebrates, diatoms, macrophytes or fish, were characterised by the constancy of a high physico-chemical status over time. By contrast, before indices based on macroinvertebrates and macrophytes, two types of patterns were observed for bad biological status: (1) a chronic multi-pressure pattern, in which pressure categories such as nitrates, pesticides and other organic hydrocarbons, in moderate, poor or bad status, repeated themselves several times over time, or (2) a single occurrence of a degraded pressure category, such as one moderate nitrogen, excluding nitrate, or one poor oxidizable organic matter, among other pressure categories in good status. Extracting such patterns is a promising solution both to disentangle the effects of the different stressors on water quality, and to identify the key temporal sequences among them in a context of multi-stress conditions, which is a challenge currently facing the WFD.
format article
author Corinne Grac
Xavier Dolques
Agnès Braud
Michèle Trémolières
Jean-Nicolas Beisel
Florence Le Ber
author_facet Corinne Grac
Xavier Dolques
Agnès Braud
Michèle Trémolières
Jean-Nicolas Beisel
Florence Le Ber
author_sort Corinne Grac
title Mining the sequential patterns of water quality preceding the biological status of waterbodies
title_short Mining the sequential patterns of water quality preceding the biological status of waterbodies
title_full Mining the sequential patterns of water quality preceding the biological status of waterbodies
title_fullStr Mining the sequential patterns of water quality preceding the biological status of waterbodies
title_full_unstemmed Mining the sequential patterns of water quality preceding the biological status of waterbodies
title_sort mining the sequential patterns of water quality preceding the biological status of waterbodies
publisher Elsevier
publishDate 2021
url https://doaj.org/article/4fc70d74ee7b4513a8db80f7f8df190b
work_keys_str_mv AT corinnegrac miningthesequentialpatternsofwaterqualityprecedingthebiologicalstatusofwaterbodies
AT xavierdolques miningthesequentialpatternsofwaterqualityprecedingthebiologicalstatusofwaterbodies
AT agnesbraud miningthesequentialpatternsofwaterqualityprecedingthebiologicalstatusofwaterbodies
AT micheletremolieres miningthesequentialpatternsofwaterqualityprecedingthebiologicalstatusofwaterbodies
AT jeannicolasbeisel miningthesequentialpatternsofwaterqualityprecedingthebiologicalstatusofwaterbodies
AT florenceleber miningthesequentialpatternsofwaterqualityprecedingthebiologicalstatusofwaterbodies
_version_ 1718405598234542080