Molecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ31
Abstract To develop and design mg-based nanoalloys with excellent properties, it is necessary to explore the forming process. In this paper, to explore the effect of different loading directions on the phase transformation of magnesium alloy, the model of AZ31 magnesium alloy was established, the pr...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4fcd80527a624df091d19254c228af9e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:4fcd80527a624df091d19254c228af9e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:4fcd80527a624df091d19254c228af9e2021-12-02T15:09:06ZMolecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ3110.1038/s41598-021-96469-32045-2322https://doaj.org/article/4fcd80527a624df091d19254c228af9e2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96469-3https://doaj.org/toc/2045-2322Abstract To develop and design mg-based nanoalloys with excellent properties, it is necessary to explore the forming process. In this paper, to explore the effect of different loading directions on the phase transformation of magnesium alloy, the model of AZ31 magnesium alloy was established, the process of Uniaxial Compression (UC) of magnesium alloy in different directions was simulated, the changes of atomic position and phase structure were observed, and the phase transformation mechanism of AZ31 magnesium alloy under uniaxial compression under different loading directions was summarized. The conclusions are as follows: the stress and strain, potential energy and volume change, void evolution, phase structure change and dislocation evolution of magnesium alloy are consistent, and there is no significant difference. In the process of uniaxial compression, the phase transformation of hexagonal closely packed (HCP) → face-centered cubic (FCC) is the main, and its structure evolves into HCP → Other → FCC. Shockley partial dislocations always precede FCC stacking faults by about 4.5%, and Shockley partial dislocations surround FCC stacking faults. In this paper, the phase transformation mechanism of AZ31 magnesium alloy under uniaxial compression under different loading directions is summarized, which provides a theoretical basis for the processing and development of magnesium-based nanoalloys.Qianhua YangChun XueZhibing ChuYugui LiLifeng MaHong GaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-9 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Qianhua Yang Chun Xue Zhibing Chu Yugui Li Lifeng Ma Hong Gao Molecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ31 |
description |
Abstract To develop and design mg-based nanoalloys with excellent properties, it is necessary to explore the forming process. In this paper, to explore the effect of different loading directions on the phase transformation of magnesium alloy, the model of AZ31 magnesium alloy was established, the process of Uniaxial Compression (UC) of magnesium alloy in different directions was simulated, the changes of atomic position and phase structure were observed, and the phase transformation mechanism of AZ31 magnesium alloy under uniaxial compression under different loading directions was summarized. The conclusions are as follows: the stress and strain, potential energy and volume change, void evolution, phase structure change and dislocation evolution of magnesium alloy are consistent, and there is no significant difference. In the process of uniaxial compression, the phase transformation of hexagonal closely packed (HCP) → face-centered cubic (FCC) is the main, and its structure evolves into HCP → Other → FCC. Shockley partial dislocations always precede FCC stacking faults by about 4.5%, and Shockley partial dislocations surround FCC stacking faults. In this paper, the phase transformation mechanism of AZ31 magnesium alloy under uniaxial compression under different loading directions is summarized, which provides a theoretical basis for the processing and development of magnesium-based nanoalloys. |
format |
article |
author |
Qianhua Yang Chun Xue Zhibing Chu Yugui Li Lifeng Ma Hong Gao |
author_facet |
Qianhua Yang Chun Xue Zhibing Chu Yugui Li Lifeng Ma Hong Gao |
author_sort |
Qianhua Yang |
title |
Molecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ31 |
title_short |
Molecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ31 |
title_full |
Molecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ31 |
title_fullStr |
Molecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ31 |
title_full_unstemmed |
Molecular dynamics study on the relationship between phase transition mechanism and loading direction of AZ31 |
title_sort |
molecular dynamics study on the relationship between phase transition mechanism and loading direction of az31 |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/4fcd80527a624df091d19254c228af9e |
work_keys_str_mv |
AT qianhuayang moleculardynamicsstudyontherelationshipbetweenphasetransitionmechanismandloadingdirectionofaz31 AT chunxue moleculardynamicsstudyontherelationshipbetweenphasetransitionmechanismandloadingdirectionofaz31 AT zhibingchu moleculardynamicsstudyontherelationshipbetweenphasetransitionmechanismandloadingdirectionofaz31 AT yuguili moleculardynamicsstudyontherelationshipbetweenphasetransitionmechanismandloadingdirectionofaz31 AT lifengma moleculardynamicsstudyontherelationshipbetweenphasetransitionmechanismandloadingdirectionofaz31 AT honggao moleculardynamicsstudyontherelationshipbetweenphasetransitionmechanismandloadingdirectionofaz31 |
_version_ |
1718387936136790016 |