Hybrid Data-Driven and Mechanistic Modeling Approaches for Multiscale Material and Process Design
The world’s increasing population requires the process industry to produce food, fuels, chemicals, and consumer products in a more efficient and sustainable way. Functional process materials lie at the heart of this challenge. Traditionally, new advanced materials are found empirically or through tr...
Guardado en:
Autores principales: | Teng Zhou, Rafiqul Gani, Kai Sundmacher |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4fe3025fccf144449df71c6c8d716784 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Efficient Surrogate Modeling and Design Optimization of Compact Integrated On-Chip Inductors Based on Multi-Fidelity EM Simulation Models
por: Piotr Kurgan
Publicado: (2021) -
Design and Optimization of a Hybrid Excitation System for Magnetically Driven Rotating DC Arc Plasma Generators
por: Xiaowen Xu, et al.
Publicado: (2021) -
A Global Sensitivity Analysis Framework for Hybrid Simulation with Stochastic Substructures
por: Nikolaos Tsokanas, et al.
Publicado: (2021) -
Design Driven Innovation Practices in Design-preneur led Creative Industry
por: Kembaren,Philips, et al.
Publicado: (2014) -
A Gradient-Free Topology Optimization Strategy for Continuum Structures with Design-Dependent Boundary Loads
por: Junjie Zhan, et al.
Publicado: (2021)