The Well Posedness for Nonhomogeneous Boussinesq Equations
This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow>...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
MDPI AG
2021
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/4fef51d036ba43dda3c7a13d1c5e8ac2 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| id |
oai:doaj.org-article:4fef51d036ba43dda3c7a13d1c5e8ac2 |
|---|---|
| record_format |
dspace |
| spelling |
oai:doaj.org-article:4fef51d036ba43dda3c7a13d1c5e8ac22021-11-25T19:06:49ZThe Well Posedness for Nonhomogeneous Boussinesq Equations10.3390/sym131121102073-8994https://doaj.org/article/4fef51d036ba43dda3c7a13d1c5e8ac22021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2110https://doaj.org/toc/2073-8994This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>∈</mo><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mo>×</mo><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mo>⋂</mo><msubsup><mi>L</mi><mi>T</mi><mn>1</mn></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mi>N</mi></mrow></semantics></math></inline-formula>. We proved the global existence of the solution when the initial velocity is small with respect to the viscosity, as well as the initial temperature approaches a positive constant. Furthermore, we proved the uniqueness for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>N</mi></mrow></semantics></math></inline-formula>. Our results can been seen as a version of symmetry in Besov space for the Boussinesq equations.Yan LiuBaiping OuyangMDPI AGarticlenon homogenous boussinesq equationsglobal well-posednesslittlewood-paley decompositionMathematicsQA1-939ENSymmetry, Vol 13, Iss 2110, p 2110 (2021) |
| institution |
DOAJ |
| collection |
DOAJ |
| language |
EN |
| topic |
non homogenous boussinesq equations global well-posedness littlewood-paley decomposition Mathematics QA1-939 |
| spellingShingle |
non homogenous boussinesq equations global well-posedness littlewood-paley decomposition Mathematics QA1-939 Yan Liu Baiping Ouyang The Well Posedness for Nonhomogeneous Boussinesq Equations |
| description |
This paper is devoted to studying the Cauchy problem for non-homogeneous Boussinesq equations. We built the results on the critical Besov spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mo>(</mo><mi>θ</mi><mo>,</mo><mi>u</mi><mo>)</mo></mrow><mo>∈</mo><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi></mrow></msubsup><mo>)</mo></mrow><mo>×</mo><msubsup><mi>L</mi><mi>T</mi><mo>∞</mo></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow><mo>⋂</mo><msubsup><mi>L</mi><mi>T</mi><mn>1</mn></msubsup><mrow><mo>(</mo><msubsup><mover accent="true"><mi>B</mi><mo>˙</mo></mover><mrow><mi>p</mi><mo>,</mo><mn>1</mn></mrow><mrow><mi>N</mi><mo>/</mo><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msubsup><mo>)</mo></mrow></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mn>2</mn><mi>N</mi></mrow></semantics></math></inline-formula>. We proved the global existence of the solution when the initial velocity is small with respect to the viscosity, as well as the initial temperature approaches a positive constant. Furthermore, we proved the uniqueness for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo>≤</mo><mi>N</mi></mrow></semantics></math></inline-formula>. Our results can been seen as a version of symmetry in Besov space for the Boussinesq equations. |
| format |
article |
| author |
Yan Liu Baiping Ouyang |
| author_facet |
Yan Liu Baiping Ouyang |
| author_sort |
Yan Liu |
| title |
The Well Posedness for Nonhomogeneous Boussinesq Equations |
| title_short |
The Well Posedness for Nonhomogeneous Boussinesq Equations |
| title_full |
The Well Posedness for Nonhomogeneous Boussinesq Equations |
| title_fullStr |
The Well Posedness for Nonhomogeneous Boussinesq Equations |
| title_full_unstemmed |
The Well Posedness for Nonhomogeneous Boussinesq Equations |
| title_sort |
well posedness for nonhomogeneous boussinesq equations |
| publisher |
MDPI AG |
| publishDate |
2021 |
| url |
https://doaj.org/article/4fef51d036ba43dda3c7a13d1c5e8ac2 |
| work_keys_str_mv |
AT yanliu thewellposednessfornonhomogeneousboussinesqequations AT baipingouyang thewellposednessfornonhomogeneousboussinesqequations AT yanliu wellposednessfornonhomogeneousboussinesqequations AT baipingouyang wellposednessfornonhomogeneousboussinesqequations |
| _version_ |
1718410276962828288 |