Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening

Abstract Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yiting Chen, Chunzhen Cheng, Xin Feng, Ruilian Lai, Minxia Gao, Wenguang Chen, Rujian Wu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/4ff141f39d9f445581919cedb3e84481
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:4ff141f39d9f445581919cedb3e84481
record_format dspace
spelling oai:doaj.org-article:4ff141f39d9f445581919cedb3e844812021-12-02T14:07:48ZIntegrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening10.1038/s41598-021-81155-12045-2322https://doaj.org/article/4ff141f39d9f445581919cedb3e844812021-01-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-81155-1https://doaj.org/toc/2045-2322Abstract Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.Yiting ChenChunzhen ChengXin FengRuilian LaiMinxia GaoWenguang ChenRujian WuNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yiting Chen
Chunzhen Cheng
Xin Feng
Ruilian Lai
Minxia Gao
Wenguang Chen
Rujian Wu
Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening
description Abstract Kiwifruit has gained increasing attention worldwide for its unique flavor and high nutritional value. Rapid softening after harvest greatly shortens its shelf-life and reduces the commercial value. Therefore, it is imperative and urgent to identify and clarify its softening mechanism. This study aimed to analyze and compare the long noncoding RNA (lncRNA) and mRNA expression patterns in ABA-treated (ABA) and room temperature (RT)-stored fruits with those in freshly harvested fruits (CK) as control. A total of 697 differentially expressed genes (DEGs) and 81 differentially expressed lncRNAs (DELs) were identified while comparing ABA with CK, and 458 DEGs and 143 DELs were detected while comparing RT with CK. The Kyoto Encyclopedia of Genes and Genomes analysis of the identified DEGs and the target genes of DELs revealed that genes involved in starch and sucrose metabolism, brassinosteroid biosynthesis, plant hormone signal transduction, and flavonoid biosynthesis accounted for a large part. The co-localization networks, including 38 DEGs and 31 DELs in ABA vs. CK, and 25 DEGs and 25 DELs in RT vs. CK, were also performed. Genes related to fruit ripening, such as genes encoding β-galactosidase, mannan endo-1,4-β-mannosidase, pectinesterase/pectinesterase inhibitor, and NAC transcription factor, were present in the co-localization network, suggesting that lncRNAs were involved in regulating kiwifruit ripening. Notably, several ethylene biosynthesis- and signaling-related genes, including one 1-aminocyclopropane-1-carboxylic acid oxidase gene and three ethylene response factor genes, were found in the co-localization network of ABA vs. CK, suggesting that the promoting effect of ABA on ethylene biosynthesis and fruit softening might be embodied by increasing the expression of these lncRNAs. These results may help understand the regulatory mechanism of lncRNAs in ripening and ABA-induced fruit softening of kiwifruit.
format article
author Yiting Chen
Chunzhen Cheng
Xin Feng
Ruilian Lai
Minxia Gao
Wenguang Chen
Rujian Wu
author_facet Yiting Chen
Chunzhen Cheng
Xin Feng
Ruilian Lai
Minxia Gao
Wenguang Chen
Rujian Wu
author_sort Yiting Chen
title Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening
title_short Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening
title_full Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening
title_fullStr Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening
title_full_unstemmed Integrated analysis of lncRNA and mRNA transcriptomes reveals the potential regulatory role of lncRNA in kiwifruit ripening and softening
title_sort integrated analysis of lncrna and mrna transcriptomes reveals the potential regulatory role of lncrna in kiwifruit ripening and softening
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/4ff141f39d9f445581919cedb3e84481
work_keys_str_mv AT yitingchen integratedanalysisoflncrnaandmrnatranscriptomesrevealsthepotentialregulatoryroleoflncrnainkiwifruitripeningandsoftening
AT chunzhencheng integratedanalysisoflncrnaandmrnatranscriptomesrevealsthepotentialregulatoryroleoflncrnainkiwifruitripeningandsoftening
AT xinfeng integratedanalysisoflncrnaandmrnatranscriptomesrevealsthepotentialregulatoryroleoflncrnainkiwifruitripeningandsoftening
AT ruilianlai integratedanalysisoflncrnaandmrnatranscriptomesrevealsthepotentialregulatoryroleoflncrnainkiwifruitripeningandsoftening
AT minxiagao integratedanalysisoflncrnaandmrnatranscriptomesrevealsthepotentialregulatoryroleoflncrnainkiwifruitripeningandsoftening
AT wenguangchen integratedanalysisoflncrnaandmrnatranscriptomesrevealsthepotentialregulatoryroleoflncrnainkiwifruitripeningandsoftening
AT rujianwu integratedanalysisoflncrnaandmrnatranscriptomesrevealsthepotentialregulatoryroleoflncrnainkiwifruitripeningandsoftening
_version_ 1718391905557938176