Deep Learning for Short-Term Load Forecasting—Industrial Consumer Case Study
In the current trend of consumption, electricity consumption will become a very high cost for the end-users. Consumers acquire energy from suppliers who use short, medium, and long-term forecasts to place bids in the power market. This study offers a detailed analysis of relevant literature and prop...
Guardado en:
Autores principales: | Stefan Ungureanu, Vasile Topa, Andrei Cristinel Cziker |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4ff471bcf9b84a75918e0375669cd943 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis for Non-Residential Short-Term Load Forecasting Using Machine Learning and Statistical Methods with Financial Impact on the Power Market
por: Stefan Ungureanu, et al.
Publicado: (2021) -
Load forecasting of hybrid deep learning model considering accumulated temperature effect
por: Haihong Bian, et al.
Publicado: (2022) -
A Novel Short-Term Residential Electric Load Forecasting Method Based on Adaptive Load Aggregation and Deep Learning Algorithms
por: Tingting Hou, et al.
Publicado: (2021) -
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021) -
Wind Power Forecasting with Deep Learning Networks: Time-Series Forecasting
por: Wen-Hui Lin, et al.
Publicado: (2021)