Generalizable deep temporal models for predicting episodes of sudden hypotension in critically ill patients: a personalized approach
Abstract The vast quantities of data generated and collected in the Intensive Care Unit (ICU) have given rise to large retrospective datasets that are frequently used for observational studies. The temporal nature and fine granularity of much of the data collected in the ICU enable the pursuit of pr...
Guardado en:
Autores principales: | Brandon Chan, Brian Chen, Alireza Sedghi, Philip Laird, David Maslove, Parvin Mousavi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/4fff9556148740bcbd4c95666c95345e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Influence of critical hypotension on the development of postoperative hepatic failure
por: N. G. Kornilov, et al.
Publicado: (2013) -
OCT angiography metrics predict intradialytic hypotension episodes in chronic hemodialysis patients: a pilot, prospective study
por: Giuseppe Coppolino, et al.
Publicado: (2021) -
Generalizability of deep learning models for dental image analysis
por: Joachim Krois, et al.
Publicado: (2021) -
Changing temporal context in human temporal lobe promotes memory of distinct episodes
por: Mostafa M. El-Kalliny, et al.
Publicado: (2019) -
Financial diversification, sudden stops, and sudden starts
por: Cowan, Kevin, 1970-, et al.
Publicado: (2019)