Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/500aa3c61def49a49934f77da350f567 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:500aa3c61def49a49934f77da350f567 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:500aa3c61def49a49934f77da350f5672021-12-02T15:39:43ZSpiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks10.1038/s41467-020-17215-32041-1723https://doaj.org/article/500aa3c61def49a49934f77da350f5672020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17215-3https://doaj.org/toc/2041-1723Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor synapses.Qingxi DuanZhaokun JingXiaolong ZouYanghao WangKe YangTeng ZhangSi WuRu HuangYuchao YangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Qingxi Duan Zhaokun Jing Xiaolong Zou Yanghao Wang Ke Yang Teng Zhang Si Wu Ru Huang Yuchao Yang Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
description |
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor synapses. |
format |
article |
author |
Qingxi Duan Zhaokun Jing Xiaolong Zou Yanghao Wang Ke Yang Teng Zhang Si Wu Ru Huang Yuchao Yang |
author_facet |
Qingxi Duan Zhaokun Jing Xiaolong Zou Yanghao Wang Ke Yang Teng Zhang Si Wu Ru Huang Yuchao Yang |
author_sort |
Qingxi Duan |
title |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_short |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_full |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_fullStr |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_full_unstemmed |
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
title_sort |
spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/500aa3c61def49a49934f77da350f567 |
work_keys_str_mv |
AT qingxiduan spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT zhaokunjing spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT xiaolongzou spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT yanghaowang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT keyang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT tengzhang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT siwu spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT ruhuang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks AT yuchaoyang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks |
_version_ |
1718385871984525312 |