Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks

Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qingxi Duan, Zhaokun Jing, Xiaolong Zou, Yanghao Wang, Ke Yang, Teng Zhang, Si Wu, Ru Huang, Yuchao Yang
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/500aa3c61def49a49934f77da350f567
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:500aa3c61def49a49934f77da350f567
record_format dspace
spelling oai:doaj.org-article:500aa3c61def49a49934f77da350f5672021-12-02T15:39:43ZSpiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks10.1038/s41467-020-17215-32041-1723https://doaj.org/article/500aa3c61def49a49934f77da350f5672020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17215-3https://doaj.org/toc/2041-1723Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor synapses.Qingxi DuanZhaokun JingXiaolong ZouYanghao WangKe YangTeng ZhangSi WuRu HuangYuchao YangNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-13 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Qingxi Duan
Zhaokun Jing
Xiaolong Zou
Yanghao Wang
Ke Yang
Teng Zhang
Si Wu
Ru Huang
Yuchao Yang
Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
description Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor synapses.
format article
author Qingxi Duan
Zhaokun Jing
Xiaolong Zou
Yanghao Wang
Ke Yang
Teng Zhang
Si Wu
Ru Huang
Yuchao Yang
author_facet Qingxi Duan
Zhaokun Jing
Xiaolong Zou
Yanghao Wang
Ke Yang
Teng Zhang
Si Wu
Ru Huang
Yuchao Yang
author_sort Qingxi Duan
title Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_short Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_full Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_fullStr Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_full_unstemmed Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
title_sort spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/500aa3c61def49a49934f77da350f567
work_keys_str_mv AT qingxiduan spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT zhaokunjing spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT xiaolongzou spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT yanghaowang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT keyang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT tengzhang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT siwu spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT ruhuang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
AT yuchaoyang spikingneuronswithspatiotemporaldynamicsandgainmodulationformonolithicallyintegratedmemristiveneuralnetworks
_version_ 1718385871984525312