Spiking neurons with spatiotemporal dynamics and gain modulation for monolithically integrated memristive neural networks
Designing energy efficient and scalable artificial networks for neuromorphic computing remains a challenge. Here, the authors demonstrate online learning in a monolithically integrated 4 × 4 fully memristive neural network consisting of volatile NbOx memristor neurons and nonvolatile TaOx memristor...
Guardado en:
Autores principales: | Qingxi Duan, Zhaokun Jing, Xiaolong Zou, Yanghao Wang, Ke Yang, Teng Zhang, Si Wu, Ru Huang, Yuchao Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/500aa3c61def49a49934f77da350f567 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Probing nanoscale oxygen ion motion in memristive systems
por: Yuchao Yang, et al.
Publicado: (2017) -
Memristive neural network for on-line learning and tracking with brain-inspired spike timing dependent plasticity
por: G. Pedretti, et al.
Publicado: (2017) -
Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits
por: M. Prezioso, et al.
Publicado: (2018) -
Synchronization and chimera states in the network of electrochemically coupled memristive Rulkov neuron maps
por: Mahtab Mehrabbeik, et al.
Publicado: (2021) -
Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices
por: Zhongqiang Wang, et al.
Publicado: (2020)