Systems biology approach highlights mechanistic differences between Crohn’s disease and ulcerative colitis
Abstract The molecular mechanisms of IBD have been the subject of intensive exploration. We, therefore, assembled the available information into a suite of causal biological network models, which offer comprehensive visualization of the processes underlying IBD. Scientific text was curated by using...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5020808525844ce6a5169f204e832fcc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The molecular mechanisms of IBD have been the subject of intensive exploration. We, therefore, assembled the available information into a suite of causal biological network models, which offer comprehensive visualization of the processes underlying IBD. Scientific text was curated by using Biological Expression Language (BEL) and compiled with OpenBEL 3.0.0. Network properties were analysed by Cytoscape. Network perturbation amplitudes were computed to score the network models with transcriptomic data from public data repositories. The IBD network model suite consists of three independent models that represent signalling pathways that contribute to IBD. In the “intestinal permeability” model, programmed cell death factors were downregulated in CD and upregulated in UC. In the “inflammation” model, PPARG, IL6, and IFN-associated pathways were prominent regulatory factors in both diseases. In the “wound healing” model, factors promoting wound healing were upregulated in CD and downregulated in UC. Scoring of publicly available transcriptomic datasets onto these network models demonstrated that the IBD models capture the perturbation in each dataset accurately. The IBD network model suite can provide better mechanistic insights of the transcriptional changes in IBD and constitutes a valuable tool in personalized medicine to further understand individual drug responses in IBD. |
---|