Gaussian process analysis of electron energy loss spectroscopy data: multivariate reconstruction and kernel control
Abstract Advances in hyperspectral imaging including electron energy loss spectroscopy bring forth the challenges of exploratory and physics-based analysis of multidimensional data sets. The multivariate linear unmixing methods generally explore similarities in the energy dimension, but ignore corre...
Guardado en:
Autores principales: | Sergei V. Kalinin, Andrew R. Lupini, Rama K. Vasudevan, Maxim Ziatdinov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/50212b02eba0430fb30e01559ae93cc2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Probing atomic-scale symmetry breaking by rotationally invariant machine learning of multidimensional electron scattering
por: Mark P. Oxley, et al.
Publicado: (2021) -
Off-the-shelf deep learning is not enough, and requires parsimony, Bayesianity, and causality
por: Rama K. Vasudevan, et al.
Publicado: (2021) -
Learning surface molecular structures via machine vision
por: Maxim Ziatdinov, et al.
Publicado: (2017) -
Thermodynamics of order and randomness in dopant distributions inferred from atomically resolved imaging
por: Lukas Vlcek, et al.
Publicado: (2021) -
Deep Bayesian local crystallography
por: Sergei V. Kalinin, et al.
Publicado: (2021)