Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis

A few patients with Hashimoto’s thyroiditis or Graves’ disease develop a multiform syndrome of the central nervous system (CNS) termed Hashimoto’s encephalopathy or steroid-responsive encephalopathy associated with autoimmune thyroid disease (HE/SREAT). They have high levels of thyroid autoantibodie...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Salvatore Benvenga, Alessandro Antonelli, Poupak Fallahi, Carmen Bonanno, Carmelo Rodolico, Fabrizio Guarneri
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/502aeba0361445e3a55e14e58d70cb5d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:502aeba0361445e3a55e14e58d70cb5d
record_format dspace
spelling oai:doaj.org-article:502aeba0361445e3a55e14e58d70cb5d2021-11-22T04:25:53ZAmino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis2214-623710.1016/j.jcte.2021.100274https://doaj.org/article/502aeba0361445e3a55e14e58d70cb5d2021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2214623721000260https://doaj.org/toc/2214-6237A few patients with Hashimoto’s thyroiditis or Graves’ disease develop a multiform syndrome of the central nervous system (CNS) termed Hashimoto’s encephalopathy or steroid-responsive encephalopathy associated with autoimmune thyroid disease (HE/SREAT). They have high levels of thyroid autoantibodies (TgAb, TPOAb and/or TSH-R-Ab) in blood and cerebrospinal fluid. Autoantibodies against alpha-enolase, aldehyde reductase-I (AKRIA) and/or dimethylargininase-I (DDAHI), proteins expressed in the CNS among other tissues, were detected in the blood and, when searched, in the cerebrospinal fluid of HE/SREAT patients. Recently, we reported that alpha-enolase, AKRIA and DDAHI share local sequence homology with each of the three autoantigens (TgAb, TPOAb, TSH-R-Ab), often in epitope-containing segments of the thyroid autoantigens. We hypothesized that there might be additional CNS-expressed proteins homologous to thyroid autoantigens, possibly overlapping known epitopes of the thyroid autoantigens. We used bioinformatic methods to address this hypothesis.Six, 27 and 47 of 46,809 CNS-expressed proteins share homology with TSH-R, Tg and TPO, respectively. The homologous regions often contain epitopes, and some match regions of thyroid autoantigens which have homology with alpha-enolase, AKRIA and/or DDAHI. Several of the aforementioned proteins are present in CNS areas that show abnormalities at neuroimaging in HE/SREAT patients. Furthermore, autoantibodies against some of the said six, 27 and 47 proteins were reported to be associated with a number of autoimmune diseases.Not only we validated our hypothesis, but we think that such a variety of potential CNS targets for thyroid Ab against epitopes contained in regions that have local homology with CNS proteins may explain the polymorphic phenotypes of HE/SREAT. Only when elevated amounts of these Ab are synthesized and trespass the blood-brain barrier, HE/SREAT appears. This might explain why HE/SREAT is so relatively rare.Salvatore BenvengaAlessandro AntonelliPoupak FallahiCarmen BonannoCarmelo RodolicoFabrizio GuarneriElsevierarticleGraves’ diseaseHashimoto’s encephalopathyThyroglobulinThyroperoxidaseThyrotropin receptorsBioinformaticsDiseases of the endocrine glands. Clinical endocrinologyRC648-665ENJournal of Clinical & Translational Endocrinology, Vol 26, Iss , Pp 100274- (2021)
institution DOAJ
collection DOAJ
language EN
topic Graves’ disease
Hashimoto’s encephalopathy
Thyroglobulin
Thyroperoxidase
Thyrotropin receptors
Bioinformatics
Diseases of the endocrine glands. Clinical endocrinology
RC648-665
spellingShingle Graves’ disease
Hashimoto’s encephalopathy
Thyroglobulin
Thyroperoxidase
Thyrotropin receptors
Bioinformatics
Diseases of the endocrine glands. Clinical endocrinology
RC648-665
Salvatore Benvenga
Alessandro Antonelli
Poupak Fallahi
Carmen Bonanno
Carmelo Rodolico
Fabrizio Guarneri
Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis
description A few patients with Hashimoto’s thyroiditis or Graves’ disease develop a multiform syndrome of the central nervous system (CNS) termed Hashimoto’s encephalopathy or steroid-responsive encephalopathy associated with autoimmune thyroid disease (HE/SREAT). They have high levels of thyroid autoantibodies (TgAb, TPOAb and/or TSH-R-Ab) in blood and cerebrospinal fluid. Autoantibodies against alpha-enolase, aldehyde reductase-I (AKRIA) and/or dimethylargininase-I (DDAHI), proteins expressed in the CNS among other tissues, were detected in the blood and, when searched, in the cerebrospinal fluid of HE/SREAT patients. Recently, we reported that alpha-enolase, AKRIA and DDAHI share local sequence homology with each of the three autoantigens (TgAb, TPOAb, TSH-R-Ab), often in epitope-containing segments of the thyroid autoantigens. We hypothesized that there might be additional CNS-expressed proteins homologous to thyroid autoantigens, possibly overlapping known epitopes of the thyroid autoantigens. We used bioinformatic methods to address this hypothesis.Six, 27 and 47 of 46,809 CNS-expressed proteins share homology with TSH-R, Tg and TPO, respectively. The homologous regions often contain epitopes, and some match regions of thyroid autoantigens which have homology with alpha-enolase, AKRIA and/or DDAHI. Several of the aforementioned proteins are present in CNS areas that show abnormalities at neuroimaging in HE/SREAT patients. Furthermore, autoantibodies against some of the said six, 27 and 47 proteins were reported to be associated with a number of autoimmune diseases.Not only we validated our hypothesis, but we think that such a variety of potential CNS targets for thyroid Ab against epitopes contained in regions that have local homology with CNS proteins may explain the polymorphic phenotypes of HE/SREAT. Only when elevated amounts of these Ab are synthesized and trespass the blood-brain barrier, HE/SREAT appears. This might explain why HE/SREAT is so relatively rare.
format article
author Salvatore Benvenga
Alessandro Antonelli
Poupak Fallahi
Carmen Bonanno
Carmelo Rodolico
Fabrizio Guarneri
author_facet Salvatore Benvenga
Alessandro Antonelli
Poupak Fallahi
Carmen Bonanno
Carmelo Rodolico
Fabrizio Guarneri
author_sort Salvatore Benvenga
title Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis
title_short Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis
title_full Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis
title_fullStr Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis
title_full_unstemmed Amino acid sequence homology between thyroid autoantigens and central nervous system proteins: Implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis
title_sort amino acid sequence homology between thyroid autoantigens and central nervous system proteins: implications for the steroid-responsive encephalopathy associated with autoimmune thyroiditis
publisher Elsevier
publishDate 2021
url https://doaj.org/article/502aeba0361445e3a55e14e58d70cb5d
work_keys_str_mv AT salvatorebenvenga aminoacidsequencehomologybetweenthyroidautoantigensandcentralnervoussystemproteinsimplicationsforthesteroidresponsiveencephalopathyassociatedwithautoimmunethyroiditis
AT alessandroantonelli aminoacidsequencehomologybetweenthyroidautoantigensandcentralnervoussystemproteinsimplicationsforthesteroidresponsiveencephalopathyassociatedwithautoimmunethyroiditis
AT poupakfallahi aminoacidsequencehomologybetweenthyroidautoantigensandcentralnervoussystemproteinsimplicationsforthesteroidresponsiveencephalopathyassociatedwithautoimmunethyroiditis
AT carmenbonanno aminoacidsequencehomologybetweenthyroidautoantigensandcentralnervoussystemproteinsimplicationsforthesteroidresponsiveencephalopathyassociatedwithautoimmunethyroiditis
AT carmelorodolico aminoacidsequencehomologybetweenthyroidautoantigensandcentralnervoussystemproteinsimplicationsforthesteroidresponsiveencephalopathyassociatedwithautoimmunethyroiditis
AT fabrizioguarneri aminoacidsequencehomologybetweenthyroidautoantigensandcentralnervoussystemproteinsimplicationsforthesteroidresponsiveencephalopathyassociatedwithautoimmunethyroiditis
_version_ 1718418220300369920