Integrating Sediment (dis)Connectivity into a Sediment Yield Model for Semi-Arid Catchments

Soil erosion-associated sedimentation has become a significant global threat to sustainable land and water resources management. Semi-arid regions that characterise much of southern Africa are particularly at risk due to extreme hydrological regimes and sparse vegetative cover. This study aims to ad...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Louise Lodenkemper, Kate Rowntree, Denis Hughes, Andrew Slaughter
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
S
Acceso en línea:https://doaj.org/article/50455eeb79554dcd9e392ff742d1de5e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Soil erosion-associated sedimentation has become a significant global threat to sustainable land and water resources management. Semi-arid regions that characterise much of southern Africa are particularly at risk due to extreme hydrological regimes and sparse vegetative cover. This study aims to address the need for an erosion and sediment delivery model that successfully incorporates our conceptual understanding of sedimentation processes in semi-arid regions, particularly sediment storage and connectivity within a catchment. Priorities of the Semi-arid Sediment Yield Model (SASYM) were simplicity and practical applicability for land and water resource management while adhering to basic geomorphic and hydrological principles. SASYM was able to represent multiple sediment storages within a catchment to effectively represent a change in landscape connectivity over geomorphic timeframes. SASYM used the Pitman rainfall–runoff model disaggregated to a daily timescale, the Modified Universal Soil Loss Equation (MUSLE), incorporating probability function theory and a representation of sediment storages and connectors across a semi-distributed catchment. SASYM was applied to a catchment in the Karoo, South Africa. Although there were limited observed data, there was a historical dataset available for the catchment through dam sedimentation history. SASYM was able to effectively present this history and provide evidence for landscape connectivity change.