Gorenstein-Projective Modules over Upper Triangular Matrix Artin Algebras
Gorenstein-projective module is an important research topic in relative homological algebra, representation theory of algebras, triangulated categories, and algebraic geometry (especially in singularity theory). For a given algebra A, how to construct all the Gorenstein-projective A-modules is a fun...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/504a2950c6f540c1a11a5a5940b32943 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Gorenstein-projective module is an important research topic in relative homological algebra, representation theory of algebras, triangulated categories, and algebraic geometry (especially in singularity theory). For a given algebra A, how to construct all the Gorenstein-projective A-modules is a fundamental problem in Gorenstein homological algebra. In this paper, we describe all complete projective resolutions over an upper triangular Artin algebra Λ=AMBA0B. We also give a necessary and sufficient condition for all finitely generated Gorenstein-projective modules over Λ=AMBA0B. |
---|