Gorenstein-Projective Modules over Upper Triangular Matrix Artin Algebras

Gorenstein-projective module is an important research topic in relative homological algebra, representation theory of algebras, triangulated categories, and algebraic geometry (especially in singularity theory). For a given algebra A, how to construct all the Gorenstein-projective A-modules is a fun...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Dadi Asefa
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/504a2950c6f540c1a11a5a5940b32943
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Gorenstein-projective module is an important research topic in relative homological algebra, representation theory of algebras, triangulated categories, and algebraic geometry (especially in singularity theory). For a given algebra A, how to construct all the Gorenstein-projective A-modules is a fundamental problem in Gorenstein homological algebra. In this paper, we describe all complete projective resolutions over an upper triangular Artin algebra Λ=AMBA0B. We also give a necessary and sufficient condition for all finitely generated Gorenstein-projective modules over Λ=AMBA0B.