The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus

Abstract Systemic Lupus Erythematosus (SLE) is an autoimmune disease resulting in autoantibody production, immune complex deposition, and complement activation. The standard biomarkers such as anti-dsDNA and complements (C3 and C4) do not always correlate with active clinical SLE. The heterogeneity...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Chokchai Thanadetsuntorn, Pintip Ngamjanyaporn, Chavachol Setthaudom, Kenneth Hodge, Nisara Saengpiya, Prapaporn Pisitkun
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/505b0225388747d69d6c234403b0b337
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:505b0225388747d69d6c234403b0b337
record_format dspace
spelling oai:doaj.org-article:505b0225388747d69d6c234403b0b3372021-12-02T15:08:16ZThe model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus10.1038/s41598-018-20947-42045-2322https://doaj.org/article/505b0225388747d69d6c234403b0b3372018-02-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-20947-4https://doaj.org/toc/2045-2322Abstract Systemic Lupus Erythematosus (SLE) is an autoimmune disease resulting in autoantibody production, immune complex deposition, and complement activation. The standard biomarkers such as anti-dsDNA and complements (C3 and C4) do not always correlate with active clinical SLE. The heterogeneity of SLE patients may require additional biomarkers to designate disease activity. Ninety SLE patients participated in this study. Evaluation of disease activity was achieved with the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and modified SLEDAI-2K. The measured serum biomarkers were anti-dsDNA, C3, C4, ESR, interleukin-6 (IL-6), and circulating immune complexes (CIC). IL-6, ESR and CIC significantly increased in active clinical SLE. Complement, anti-dsDNA, ESR and CIC correlated with SLEDAI-2K while only anti-dsDNA, CIC, ESR and IL-6 correlated with modified SLEDAI-2K. A combination of biomarkers gave a higher odds ratio (OR) than any single biomarker. A combination of IL-6 or CIC exhibited the highest OR (OR = 7.27, 95%CI (1.99–26.63), p = 0.003) while either complement or anti-dsDNA showed a moderate odds ratio (OR = 3.14, 95%CI (1.16–8.48), p = 0.024) of predicting clinical active SLE. The combination of CIC and IL-6 strongly predicts active clinical SLE. CIC and IL-6 can be used in addition to standard biomarkers to determine SLE activity.Chokchai ThanadetsuntornPintip NgamjanyapornChavachol SetthaudomKenneth HodgeNisara SaengpiyaPrapaporn PisitkunNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-8 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Chokchai Thanadetsuntorn
Pintip Ngamjanyaporn
Chavachol Setthaudom
Kenneth Hodge
Nisara Saengpiya
Prapaporn Pisitkun
The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus
description Abstract Systemic Lupus Erythematosus (SLE) is an autoimmune disease resulting in autoantibody production, immune complex deposition, and complement activation. The standard biomarkers such as anti-dsDNA and complements (C3 and C4) do not always correlate with active clinical SLE. The heterogeneity of SLE patients may require additional biomarkers to designate disease activity. Ninety SLE patients participated in this study. Evaluation of disease activity was achieved with the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2K) and modified SLEDAI-2K. The measured serum biomarkers were anti-dsDNA, C3, C4, ESR, interleukin-6 (IL-6), and circulating immune complexes (CIC). IL-6, ESR and CIC significantly increased in active clinical SLE. Complement, anti-dsDNA, ESR and CIC correlated with SLEDAI-2K while only anti-dsDNA, CIC, ESR and IL-6 correlated with modified SLEDAI-2K. A combination of biomarkers gave a higher odds ratio (OR) than any single biomarker. A combination of IL-6 or CIC exhibited the highest OR (OR = 7.27, 95%CI (1.99–26.63), p = 0.003) while either complement or anti-dsDNA showed a moderate odds ratio (OR = 3.14, 95%CI (1.16–8.48), p = 0.024) of predicting clinical active SLE. The combination of CIC and IL-6 strongly predicts active clinical SLE. CIC and IL-6 can be used in addition to standard biomarkers to determine SLE activity.
format article
author Chokchai Thanadetsuntorn
Pintip Ngamjanyaporn
Chavachol Setthaudom
Kenneth Hodge
Nisara Saengpiya
Prapaporn Pisitkun
author_facet Chokchai Thanadetsuntorn
Pintip Ngamjanyaporn
Chavachol Setthaudom
Kenneth Hodge
Nisara Saengpiya
Prapaporn Pisitkun
author_sort Chokchai Thanadetsuntorn
title The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus
title_short The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus
title_full The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus
title_fullStr The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus
title_full_unstemmed The model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus
title_sort model of circulating immune complexes and interleukin-6 improves the prediction of disease activity in systemic lupus erythematosus
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/505b0225388747d69d6c234403b0b337
work_keys_str_mv AT chokchaithanadetsuntorn themodelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT pintipngamjanyaporn themodelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT chavacholsetthaudom themodelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT kennethhodge themodelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT nisarasaengpiya themodelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT prapapornpisitkun themodelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT chokchaithanadetsuntorn modelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT pintipngamjanyaporn modelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT chavacholsetthaudom modelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT kennethhodge modelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT nisarasaengpiya modelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
AT prapapornpisitkun modelofcirculatingimmunecomplexesandinterleukin6improvesthepredictionofdiseaseactivityinsystemiclupuserythematosus
_version_ 1718388184460558336