A new strategy to map landslides with a generalized convolutional neural network
Abstract Rapid mapping of event landslides is crucial to identify the areas affected by damages as well as for effective disaster response. Traditionally, such maps are generated with visual interpretation of remote sensing imagery (manned/unmanned airborne systems or spaceborne sensors) and/or usin...
Guardado en:
Autores principales: | Nikhil Prakash, Andrea Manconi, Simon Loew |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5065794c8ee344e9b24a236215f0c432 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Punatsangchhu-I dam landslide illuminated by InSAR multitemporal analyses
por: Benedetta Dini, et al.
Publicado: (2020) -
Mauritia flexuosa palm trees airborne mapping with deep convolutional neural network
por: Luciene Sales Dagher Arce, et al.
Publicado: (2021) -
Mapping Relict Charcoal Hearths in New England Using Deep Convolutional Neural Networks and LiDAR Data
por: Ji Won Suh, et al.
Publicado: (2021) -
Landslide Susceptibility Mapping Using Ant Colony Optimization Strategy and Deep Belief Network in Jiuzhaigou Region
por: Yibing Xiong, et al.
Publicado: (2021) -
Research on improved convolutional wavelet neural network
por: Jingwei Liu, et al.
Publicado: (2021)