Ultrafast photonic reinforcement learning based on laser chaos
Abstract Reinforcement learning involves decision making in dynamic and uncertain environments and constitutes an important element of artificial intelligence (AI). In this work, we experimentally demonstrate that the ultrafast chaotic oscillatory dynamics of lasers efficiently solve the multi-armed...
Guardado en:
Autores principales: | Makoto Naruse, Yuta Terashima, Atsushi Uchida, Song-Ju Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/506a6a3704f44445ad9f4c41e8098dc9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Arm order recognition in multi-armed bandit problem with laser chaos time series
por: Naoki Narisawa, et al.
Publicado: (2021) -
Private communication with quantum cascade laser photonic chaos
por: Olivier Spitz, et al.
Publicado: (2021) -
Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication
por: Yongjiu Yuan, et al.
Publicado: (2020) -
Self-controlling photonic-on-chip networks with deep reinforcement learning
por: Nguyen Do, et al.
Publicado: (2021) -
Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources
por: W. Roseker, et al.
Publicado: (2018)