Evaluation of Effect of Brassinolide in <i>Brassica juncea</i> Leaves under Drought Stress in Field Conditions
Drought stress is considered to be a major factor responsible for reduced agricultural productivity, because it is often linked to other major abiotic stresses, such as salinity and heat stress. Understanding drought-tolerance mechanisms is important for crop improvement. Moreover, under drought con...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/508d54b36fb5433d98d9e0056951f7db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Drought stress is considered to be a major factor responsible for reduced agricultural productivity, because it is often linked to other major abiotic stresses, such as salinity and heat stress. Understanding drought-tolerance mechanisms is important for crop improvement. Moreover, under drought conditions, it is possible that growth regulators are able to protect the plants. Brassinosteroids not only play a regulatory role in plant growth, but also organize defense mechanisms against various tresses. This study aimed to evaluate the effect of brassinolide on physio-biochemical amendment in two contrasting cultivars (drought-tolerant RH 725, and drought-sensitive RH 749) of <i>Brassica juncea</i> under drought stress. Two foliar sprayings with brassinolide (10 and 20 mg/L) were carried out in both cultivars (RH 725 and RH 749) at two stages—i.e., flower initiation, and 50% flowering—under stress conditions. The results clearly revealed that the activities of antioxidative enzymes and non-enzymatic antioxidants (carotenoids, ascorbic acid, and proline) increased significantly in RH 725 at 50% flowering, whereas 20 mg/L of brassinolide showed the most promising response. The different oxidative stress indicators (i.e., hydrogen peroxide, malondialdehyde, and electrolyte leakage) decreased to a significant extent at 20 mg/L of brassinolide spray in RH 725 at 50% flowering. This study indicates that brassinolide intensifies the physio-biochemical attributes by improving the antioxidant system and photosynthetic efficiency in RH 725 at 50% flowering. It is assumed that enhanced production of proline, improvement of the antioxidant system, and reduction in the amount of stress indicators impart strength to the plants to combat the stress conditions. |
---|