A generative adversarial network-based abnormality detection using only normal images for model training with application to digital breast tomosynthesis
Abstract Deep learning has shown tremendous potential in the task of object detection in images. However, a common challenge with this task is when only a limited number of images containing the object of interest are available. This is a particular issue in cancer screening, such as digital breast...
Enregistré dans:
Auteurs principaux: | Albert Swiecicki, Nicholas Konz, Mateusz Buda, Maciej A. Mazurowski |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/508eb076572e45cab8b174526afb95f2 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Evaluation of Breast Galactography Using Digital Breast Tomosynthesis: A Clinical Exploratory Study
par: Juan Tao, et autres
Publié: (2021) -
Utility of Digital Breast Tomosynthesis with Two-Dimensional Synthesized Mammography Images: A Pictorial Essay
par: Pradipta C. Hande, et autres
Publié: (2021) -
Prediction of breast cancer molecular subtypes using radiomics signatures of synthetic mammography from digital breast tomosynthesis
par: Jinwoo Son, et autres
Publié: (2020) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
par: Chuan Du, et autres
Publié: (2021) -
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
par: Tianyu Han, et autres
Publié: (2021)