A generative adversarial network-based abnormality detection using only normal images for model training with application to digital breast tomosynthesis
Abstract Deep learning has shown tremendous potential in the task of object detection in images. However, a common challenge with this task is when only a limited number of images containing the object of interest are available. This is a particular issue in cancer screening, such as digital breast...
Guardado en:
Autores principales: | Albert Swiecicki, Nicholas Konz, Mateusz Buda, Maciej A. Mazurowski |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/508eb076572e45cab8b174526afb95f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evaluation of Breast Galactography Using Digital Breast Tomosynthesis: A Clinical Exploratory Study
por: Juan Tao, et al.
Publicado: (2021) -
Utility of Digital Breast Tomosynthesis with Two-Dimensional Synthesized Mammography Images: A Pictorial Essay
por: Pradipta C. Hande, et al.
Publicado: (2021) -
Prediction of breast cancer molecular subtypes using radiomics signatures of synthetic mammography from digital breast tomosynthesis
por: Jinwoo Son, et al.
Publicado: (2020) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Advancing diagnostic performance and clinical usability of neural networks via adversarial training and dual batch normalization
por: Tianyu Han, et al.
Publicado: (2021)