A Comparison of Different Methodologies for PVB Interlayer Modulus Characterization
The proper measurement and interpretation of modulus data for glass laminate interlayers can be quite complex. The development of master curves using different deformation modes and the preparation of the samples for measurement can significantly affect the results. International standard ISO 6721,...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Challenging Glass Conference
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5098293f6d9a4051a7b3d41f49faf641 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5098293f6d9a4051a7b3d41f49faf641 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5098293f6d9a4051a7b3d41f49faf6412021-12-04T05:12:37ZA Comparison of Different Methodologies for PVB Interlayer Modulus Characterization10.7480/cgc.5.22662589-8019https://doaj.org/article/5098293f6d9a4051a7b3d41f49faf6412016-06-01T00:00:00Zhttps://proceedings.challengingglass.com/index.php/cgc/article/view/161https://doaj.org/toc/2589-8019 The proper measurement and interpretation of modulus data for glass laminate interlayers can be quite complex. The development of master curves using different deformation modes and the preparation of the samples for measurement can significantly affect the results. International standard ISO 6721, determination of dynamic mechanical properties, uses modulus as a primary criterion for method selection. The shear modulus of polyvinylbutyral (PVB) materials varies to a great extent, e.g. 1 – 400 MPa, over the temperatures and durations encountered for glass laminates in a building. We have evaluated the use of tensile and plate-plate geometries for a regular and a high rigidity (“structural”) PVB interlayer material, as well as torsion geometry for a structural PVB interlayer material. In some cases, datasets from different sources have been compared. This paper will discuss the results we obtained using different methodologies, and explore the effect with regards to positioning of the interlayers in the “stiffness families” and the associated shear transfer coefficients as in draft European norms prEN 16612 and prEN 16613. W. StevelsP. D'HaeneP. ZhangS. HaldemanChallenging Glass ConferencearticlePolyvinylbutyralStructural PVBInterlayerStorage ModulusLaminated GlassprEN 16613Clay industries. Ceramics. GlassTP785-869ENChallenging Glass Conference Proceedings, Vol 5 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Polyvinylbutyral Structural PVB Interlayer Storage Modulus Laminated Glass prEN 16613 Clay industries. Ceramics. Glass TP785-869 |
spellingShingle |
Polyvinylbutyral Structural PVB Interlayer Storage Modulus Laminated Glass prEN 16613 Clay industries. Ceramics. Glass TP785-869 W. Stevels P. D'Haene P. Zhang S. Haldeman A Comparison of Different Methodologies for PVB Interlayer Modulus Characterization |
description |
The proper measurement and interpretation of modulus data for glass laminate interlayers can be quite complex. The development of master curves using different deformation modes and the preparation of the samples for measurement can significantly affect the results. International standard ISO 6721, determination of dynamic mechanical properties, uses modulus as a primary criterion for method selection. The shear modulus of polyvinylbutyral (PVB) materials varies to a great extent, e.g. 1 – 400 MPa, over the temperatures and durations encountered for glass laminates in a building. We have evaluated the use of tensile and plate-plate geometries for a regular and a high rigidity (“structural”) PVB interlayer material, as well as torsion geometry for a structural PVB interlayer material. In some cases, datasets from different sources have been compared. This paper will discuss the results we obtained using different methodologies, and explore the effect with regards to positioning of the interlayers in the “stiffness families” and the associated shear transfer coefficients as in draft European norms prEN 16612 and prEN 16613.
|
format |
article |
author |
W. Stevels P. D'Haene P. Zhang S. Haldeman |
author_facet |
W. Stevels P. D'Haene P. Zhang S. Haldeman |
author_sort |
W. Stevels |
title |
A Comparison of Different Methodologies for PVB Interlayer Modulus Characterization |
title_short |
A Comparison of Different Methodologies for PVB Interlayer Modulus Characterization |
title_full |
A Comparison of Different Methodologies for PVB Interlayer Modulus Characterization |
title_fullStr |
A Comparison of Different Methodologies for PVB Interlayer Modulus Characterization |
title_full_unstemmed |
A Comparison of Different Methodologies for PVB Interlayer Modulus Characterization |
title_sort |
comparison of different methodologies for pvb interlayer modulus characterization |
publisher |
Challenging Glass Conference |
publishDate |
2016 |
url |
https://doaj.org/article/5098293f6d9a4051a7b3d41f49faf641 |
work_keys_str_mv |
AT wstevels acomparisonofdifferentmethodologiesforpvbinterlayermoduluscharacterization AT pdhaene acomparisonofdifferentmethodologiesforpvbinterlayermoduluscharacterization AT pzhang acomparisonofdifferentmethodologiesforpvbinterlayermoduluscharacterization AT shaldeman acomparisonofdifferentmethodologiesforpvbinterlayermoduluscharacterization AT wstevels comparisonofdifferentmethodologiesforpvbinterlayermoduluscharacterization AT pdhaene comparisonofdifferentmethodologiesforpvbinterlayermoduluscharacterization AT pzhang comparisonofdifferentmethodologiesforpvbinterlayermoduluscharacterization AT shaldeman comparisonofdifferentmethodologiesforpvbinterlayermoduluscharacterization |
_version_ |
1718372852821917696 |