Correcting the Estimation of Viral Taxa Distributions in Next-Generation Sequencing Data after Applying Artificial Neural Networks
Estimating the taxonomic composition of viral sequences in a biological samples processed by next-generation sequencing is an important step in comparative metagenomics. Mapping sequencing reads against a database of known viral reference genomes, however, fails to classify reads from novel viruses...
Enregistré dans:
Auteurs principaux: | Moritz Kohls, Magdalena Kircher, Jessica Krepel, Pamela Liebig, Klaus Jung |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/50bbe16f0f614b6893a74c2fd88ca9aa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Metagenomic Next-Generation Sequencing of Nasopharyngeal Specimens Collected from Confirmed and Suspect COVID-19 Patients
par: Heba H. Mostafa, et autres
Publié: (2020) -
Translating Lung Microbiome Profiles into the Next-Generation Diagnostic Gold Standard for Pneumonia: a Clinical Investigator’s Perspective
par: Georgios D. Kitsios
Publié: (2018) -
Etiology of granulomatous lobular mastitis based on metagenomic next-generation sequencing
par: Jiaxin Bi, et autres
Publié: (2021) -
Bacterial and Fungal Infections Promote the Bone Erosion Progression in Acquired Cholesteatoma Revealed by Metagenomic Next-Generation Sequencing
par: Hua Jiang, et autres
Publié: (2021) -
Metagenomic Analysis of the Virome of Mosquito Excreta
par: Ana L. Ramírez, et autres
Publié: (2020)