Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential

This paper studies the mass-critical variable coefficient nonlinear Schrödinger equation. We first get the existence of the ground state by solving a minimization problem. Then we prove a compactness result by the variational characterization of the ground state solutions. In addition, we construct...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pan Jingjing, Zhang Jian
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/50f43f151ff94a1a846067da8b374f1b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper studies the mass-critical variable coefficient nonlinear Schrödinger equation. We first get the existence of the ground state by solving a minimization problem. Then we prove a compactness result by the variational characterization of the ground state solutions. In addition, we construct the blow-up solutions at the minimal mass threshold and further prove the uniqueness result on the minimal mass blow-up solutions which are pseudo-conformal transformation of the ground states.