Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential
This paper studies the mass-critical variable coefficient nonlinear Schrödinger equation. We first get the existence of the ground state by solving a minimization problem. Then we prove a compactness result by the variational characterization of the ground state solutions. In addition, we construct...
Enregistré dans:
Auteurs principaux: | Pan Jingjing, Zhang Jian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
De Gruyter
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/50f43f151ff94a1a846067da8b374f1b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system
par: Geng Qiuping, et autres
Publié: (2021) -
Ground state solutions to a class of critical Schrödinger problem
par: Mao Anmin, et autres
Publié: (2021) -
Sharp conditions on global existence and blow-up in a degenerate two-species and cross-attraction system
par: Carrillo Antonio José, et autres
Publié: (2021) -
Existence of single peak solutions for a nonlinear Schrödinger system with coupled quadratic nonlinearity
par: Yang Jing, et autres
Publié: (2021) -
Blow-up results of the positive solution for a class of degenerate parabolic equations
par: Dong Chenyu, et autres
Publié: (2021)