Advancing theoretical understanding and practical performance of signal processing for nonlinear optical communications through machine learning
Nonlinear effects provide inherent limitations in fiber optical communications. Here, the authors experimentally demonstrate improved digital back propagation with machine learning and use the results to reveal insights in the optimization of digital signal processing.
Enregistré dans:
Auteurs principaux: | Qirui Fan, Gai Zhou, Tao Gui, Chao Lu, Alan Pak Tao Lau |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/50f8d967bc4946a0b867e0de9bb7a6ad |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Correlated Eigenvalues of Multi-Soliton Optical Communications
par: Wen Qi Zhang, et autres
Publié: (2019) -
Recent advances in nonlinear optics for bio-imaging applications
par: Zhang Silu, et autres
Publié: (2020) -
Optical wave patterns of nonlinear Schrödinger equation with anti-cubic nonlinearity in optical fiber
par: Fan Sun
Publié: (2021) -
An information-theoretic machine learning approach to expression QTL analysis.
par: Tao Huang, et autres
Publié: (2013) -
Theoretical and Numerical Analysis of Coupled Axial-Torsional Nonlinear Vibration of Drill Strings
par: Xinye Li, et autres
Publié: (2021)