Novel Algorithms for Improved Sensitivity in Non-Invasive Prenatal Testing

Abstract Non-invasive prenatal testing (NIPT) of cell-free DNA in maternal plasma, which is a mixture of maternal DNA and a low percentage of fetal DNA, can detect fetal aneuploidies using massively parallel sequencing. Because of the low percentage of fetal DNA, methods with high sensitivity and pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: L. F. Johansson, E. N. de Boer, H. A. de Weerd, F. van Dijk, M. G. Elferink, G. H. Schuring-Blom, R. F. Suijkerbuijk, R. J. Sinke, G. J. te Meerman, R. H. Sijmons, M. A. Swertz, B. Sikkema-Raddatz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/50fe59706dee446cb5379772bb6c48fa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:50fe59706dee446cb5379772bb6c48fa
record_format dspace
spelling oai:doaj.org-article:50fe59706dee446cb5379772bb6c48fa2021-12-02T12:32:40ZNovel Algorithms for Improved Sensitivity in Non-Invasive Prenatal Testing10.1038/s41598-017-02031-52045-2322https://doaj.org/article/50fe59706dee446cb5379772bb6c48fa2017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-02031-5https://doaj.org/toc/2045-2322Abstract Non-invasive prenatal testing (NIPT) of cell-free DNA in maternal plasma, which is a mixture of maternal DNA and a low percentage of fetal DNA, can detect fetal aneuploidies using massively parallel sequencing. Because of the low percentage of fetal DNA, methods with high sensitivity and precision are required. However, sequencing variation lowers sensitivity and hampers detection of trisomy samples. Therefore, we have developed three algorithms to improve sensitivity and specificity: the chi-squared-based variation reduction (χ2VR), the regression-based Z-score (RBZ) and the Match QC score. The χ2VR reduces variability in sequence read counts per chromosome between samples, the RBZ allows for more precise trisomy prediction, and the Match QC score shows if the control group used is representative for a specific sample. We compared the performance of χ2VR to that of existing variation reduction algorithms (peak and GC correction) and that of RBZ to trisomy prediction algorithms (standard Z-score, normalized chromosome value and median-absolute-deviation-based Z-score). χ2VR and the RBZ both reduce variability more than existing methods, and thereby increase the sensitivity of the NIPT analysis. We found the optimal combination of algorithms was to use both GC correction and χ2VR for pre-processing and to use RBZ as the trisomy prediction method.L. F. JohanssonE. N. de BoerH. A. de WeerdF. van DijkM. G. ElferinkG. H. Schuring-BlomR. F. SuijkerbuijkR. J. SinkeG. J. te MeermanR. H. SijmonsM. A. SwertzB. Sikkema-RaddatzNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-11 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
L. F. Johansson
E. N. de Boer
H. A. de Weerd
F. van Dijk
M. G. Elferink
G. H. Schuring-Blom
R. F. Suijkerbuijk
R. J. Sinke
G. J. te Meerman
R. H. Sijmons
M. A. Swertz
B. Sikkema-Raddatz
Novel Algorithms for Improved Sensitivity in Non-Invasive Prenatal Testing
description Abstract Non-invasive prenatal testing (NIPT) of cell-free DNA in maternal plasma, which is a mixture of maternal DNA and a low percentage of fetal DNA, can detect fetal aneuploidies using massively parallel sequencing. Because of the low percentage of fetal DNA, methods with high sensitivity and precision are required. However, sequencing variation lowers sensitivity and hampers detection of trisomy samples. Therefore, we have developed three algorithms to improve sensitivity and specificity: the chi-squared-based variation reduction (χ2VR), the regression-based Z-score (RBZ) and the Match QC score. The χ2VR reduces variability in sequence read counts per chromosome between samples, the RBZ allows for more precise trisomy prediction, and the Match QC score shows if the control group used is representative for a specific sample. We compared the performance of χ2VR to that of existing variation reduction algorithms (peak and GC correction) and that of RBZ to trisomy prediction algorithms (standard Z-score, normalized chromosome value and median-absolute-deviation-based Z-score). χ2VR and the RBZ both reduce variability more than existing methods, and thereby increase the sensitivity of the NIPT analysis. We found the optimal combination of algorithms was to use both GC correction and χ2VR for pre-processing and to use RBZ as the trisomy prediction method.
format article
author L. F. Johansson
E. N. de Boer
H. A. de Weerd
F. van Dijk
M. G. Elferink
G. H. Schuring-Blom
R. F. Suijkerbuijk
R. J. Sinke
G. J. te Meerman
R. H. Sijmons
M. A. Swertz
B. Sikkema-Raddatz
author_facet L. F. Johansson
E. N. de Boer
H. A. de Weerd
F. van Dijk
M. G. Elferink
G. H. Schuring-Blom
R. F. Suijkerbuijk
R. J. Sinke
G. J. te Meerman
R. H. Sijmons
M. A. Swertz
B. Sikkema-Raddatz
author_sort L. F. Johansson
title Novel Algorithms for Improved Sensitivity in Non-Invasive Prenatal Testing
title_short Novel Algorithms for Improved Sensitivity in Non-Invasive Prenatal Testing
title_full Novel Algorithms for Improved Sensitivity in Non-Invasive Prenatal Testing
title_fullStr Novel Algorithms for Improved Sensitivity in Non-Invasive Prenatal Testing
title_full_unstemmed Novel Algorithms for Improved Sensitivity in Non-Invasive Prenatal Testing
title_sort novel algorithms for improved sensitivity in non-invasive prenatal testing
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/50fe59706dee446cb5379772bb6c48fa
work_keys_str_mv AT lfjohansson novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT endeboer novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT hadeweerd novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT fvandijk novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT mgelferink novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT ghschuringblom novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT rfsuijkerbuijk novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT rjsinke novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT gjtemeerman novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT rhsijmons novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT maswertz novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
AT bsikkemaraddatz novelalgorithmsforimprovedsensitivityinnoninvasiveprenataltesting
_version_ 1718393977598640128