Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization
The groundbreaking success of deep learning in many real-world tasks has triggered an intense effort to theoretically understand the power and limitations of deep learning in the training and generalization of complex tasks, so far with limited progress. In this work, we study the statistical mechan...
Guardado en:
Autores principales: | Qianyi Li, Haim Sompolinsky |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/510738e70abd43f7a350f976de4a2e33 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tensor Renormalization Group for interacting quantum fields
por: Manuel Campos, et al.
Publicado: (2021) -
Taming nucleon density distributions with deep neural network
por: Zu-Xing Yang, et al.
Publicado: (2021) -
Spintronics Meets Density Matrix Renormalization Group: Quantum Spin-Torque-Driven Nonclassical Magnetization Reversal and Dynamical Buildup of Long-Range Entanglement
por: Marko D. Petrović, et al.
Publicado: (2021) -
Separability and geometry of object manifolds in deep neural networks
por: Uri Cohen, et al.
Publicado: (2020) -
Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model
por: Sebastian Goldt, et al.
Publicado: (2020)