Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization
The groundbreaking success of deep learning in many real-world tasks has triggered an intense effort to theoretically understand the power and limitations of deep learning in the training and generalization of complex tasks, so far with limited progress. In this work, we study the statistical mechan...
Enregistré dans:
Auteurs principaux: | Qianyi Li, Haim Sompolinsky |
---|---|
Format: | article |
Langue: | EN |
Publié: |
American Physical Society
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/510738e70abd43f7a350f976de4a2e33 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Tensor Renormalization Group for interacting quantum fields
par: Manuel Campos, et autres
Publié: (2021) -
Taming nucleon density distributions with deep neural network
par: Zu-Xing Yang, et autres
Publié: (2021) -
Spintronics Meets Density Matrix Renormalization Group: Quantum Spin-Torque-Driven Nonclassical Magnetization Reversal and Dynamical Buildup of Long-Range Entanglement
par: Marko D. Petrović, et autres
Publié: (2021) -
Separability and geometry of object manifolds in deep neural networks
par: Uri Cohen, et autres
Publié: (2020) -
Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model
par: Sebastian Goldt, et autres
Publié: (2020)