Uncovering the structure of self-regulation through data-driven ontology discovery
Scientific progress relies on integrating and building on existing knowledge. Here, the authors propose improving cumulative science by developing data-driven ontologies, and they apply this approach to understanding the construct of self-regulation.
Enregistré dans:
Auteurs principaux: | Ian W. Eisenberg, Patrick G. Bissett, A. Zeynep Enkavi, Jamie Li, David P. MacKinnon, Lisa A. Marsch, Russell A. Poldrack |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2019
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5113eaa6e26d440cad2af4c6dd73fbd9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Semantics in support of biodiversity knowledge discovery: an introduction to the biological collections ontology and related ontologies.
par: Ramona L Walls, et autres
Publié: (2014) -
Ontology-driven weak supervision for clinical entity classification in electronic health records
par: Jason A. Fries, et autres
Publié: (2021) -
Institutional Ontology as an Ontology of Types
par: Lorenzo Passerini Glazel
Publié: (2016) -
Uncovering and classifying the role of driven nodes in control of complex networks
par: Yuma Shinzawa, et autres
Publié: (2021) -
Applied ontology
Publié: (2005)