Uncovering the structure of self-regulation through data-driven ontology discovery
Scientific progress relies on integrating and building on existing knowledge. Here, the authors propose improving cumulative science by developing data-driven ontologies, and they apply this approach to understanding the construct of self-regulation.
Guardado en:
Autores principales: | Ian W. Eisenberg, Patrick G. Bissett, A. Zeynep Enkavi, Jamie Li, David P. MacKinnon, Lisa A. Marsch, Russell A. Poldrack |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5113eaa6e26d440cad2af4c6dd73fbd9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Semantics in support of biodiversity knowledge discovery: an introduction to the biological collections ontology and related ontologies.
por: Ramona L Walls, et al.
Publicado: (2014) -
Ontology-driven weak supervision for clinical entity classification in electronic health records
por: Jason A. Fries, et al.
Publicado: (2021) -
Institutional Ontology as an Ontology of Types
por: Lorenzo Passerini Glazel
Publicado: (2016) -
Uncovering and classifying the role of driven nodes in control of complex networks
por: Yuma Shinzawa, et al.
Publicado: (2021) -
Applied ontology
Publicado: (2005)