A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction
Abstract This paper introduces a deep-learning based computer-aided diagnostic (CAD) system for the early detection of acute renal transplant rejection. For noninvasive detection of kidney rejection at an early stage, the proposed CAD system is based on the fusion of both imaging markers and clinica...
Guardado en:
Autores principales: | Hisham Abdeltawab, Mohamed Shehata, Ahmed Shalaby, Fahmi Khalifa, Ali Mahmoud, Mohamed Abou El-Ghar, Amy C. Dwyer, Mohammed Ghazal, Hassan Hajjdiab, Robert Keynton, Ayman El-Baz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5122771f8eff417ead0e170207bac3a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: A pyramidal deep learning pipeline for kidney whole-slide histology images classification
por: Hisham Abdeltawab, et al.
Publicado: (2021) -
Towards Contactless Learning Activities during Pandemics Using Autonomous Service Robots
por: Anas Al Tarabsheh, et al.
Publicado: (2021) - CAD/CAM Update
-
Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education
por: Marah Alhalabi, et al.
Publicado: (2021) -
A novel computer-aided diagnostic system for accurate detection and grading of liver tumors
por: Ahmed Alksas, et al.
Publicado: (2021)