Embracing the dropouts in single-cell RNA-seq analysis
The analysis of RNA-seq data is complicated by dropouts, and these are usually treated as a problem to be addressed. Here, Peng Qiu uses dropouts as a source of information and presents a co-occurrence clustering algorithm to cluster cells based on the dropout pattern; this could be a complementary...
Guardado en:
Autor principal: | Peng Qiu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/512620a580e14a5599691b08db28363c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
SDImpute: A statistical block imputation method based on cell-level and gene-level information for dropouts in single-cell RNA-seq data.
por: Jing Qi, et al.
Publicado: (2021) -
Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement
por: Guangshuai Jia, et al.
Publicado: (2018) -
A systematic evaluation of single cell RNA-seq analysis pipelines
por: Beate Vieth, et al.
Publicado: (2019) -
NASC-seq monitors RNA synthesis in single cells
por: Gert-Jan Hendriks, et al.
Publicado: (2019) -
A web server for comparative analysis of single-cell RNA-seq data
por: Amir Alavi, et al.
Publicado: (2018)