SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.

The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Christopher A Miller, Brian S White, Nathan D Dees, Malachi Griffith, John S Welch, Obi L Griffith, Ravi Vij, Michael H Tomasson, Timothy A Graubert, Matthew J Walter, Matthew J Ellis, William Schierding, John F DiPersio, Timothy J Ley, Elaine R Mardis, Richard K Wilson, Li Ding
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
Acceso en línea:https://doaj.org/article/513fe959e2924b31a6a0830661bda655
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:513fe959e2924b31a6a0830661bda655
record_format dspace
spelling oai:doaj.org-article:513fe959e2924b31a6a0830661bda6552021-11-25T05:40:52ZSciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.1553-734X1553-735810.1371/journal.pcbi.1003665https://doaj.org/article/513fe959e2924b31a6a0830661bda6552014-08-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25102416/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy.Christopher A MillerBrian S WhiteNathan D DeesMalachi GriffithJohn S WelchObi L GriffithRavi VijMichael H TomassonTimothy A GraubertMatthew J WalterMatthew J EllisWilliam SchierdingJohn F DiPersioTimothy J LeyElaine R MardisRichard K WilsonLi DingPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 10, Iss 8, p e1003665 (2014)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Christopher A Miller
Brian S White
Nathan D Dees
Malachi Griffith
John S Welch
Obi L Griffith
Ravi Vij
Michael H Tomasson
Timothy A Graubert
Matthew J Walter
Matthew J Ellis
William Schierding
John F DiPersio
Timothy J Ley
Elaine R Mardis
Richard K Wilson
Li Ding
SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.
description The sensitivity of massively-parallel sequencing has confirmed that most cancers are oligoclonal, with subpopulations of neoplastic cells harboring distinct mutations. A fine resolution view of this clonal architecture provides insight into tumor heterogeneity, evolution, and treatment response, all of which may have clinical implications. Single tumor analysis already contributes to understanding these phenomena. However, cryptic subclones are frequently revealed by additional patient samples (e.g., collected at relapse or following treatment), indicating that accurately characterizing a tumor requires analyzing multiple samples from the same patient. To address this need, we present SciClone, a computational method that identifies the number and genetic composition of subclones by analyzing the variant allele frequencies of somatic mutations. We use it to detect subclones in acute myeloid leukemia and breast cancer samples that, though present at disease onset, are not evident from a single primary tumor sample. By doing so, we can track tumor evolution and identify the spatial origins of cells resisting therapy.
format article
author Christopher A Miller
Brian S White
Nathan D Dees
Malachi Griffith
John S Welch
Obi L Griffith
Ravi Vij
Michael H Tomasson
Timothy A Graubert
Matthew J Walter
Matthew J Ellis
William Schierding
John F DiPersio
Timothy J Ley
Elaine R Mardis
Richard K Wilson
Li Ding
author_facet Christopher A Miller
Brian S White
Nathan D Dees
Malachi Griffith
John S Welch
Obi L Griffith
Ravi Vij
Michael H Tomasson
Timothy A Graubert
Matthew J Walter
Matthew J Ellis
William Schierding
John F DiPersio
Timothy J Ley
Elaine R Mardis
Richard K Wilson
Li Ding
author_sort Christopher A Miller
title SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.
title_short SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.
title_full SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.
title_fullStr SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.
title_full_unstemmed SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.
title_sort sciclone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/513fe959e2924b31a6a0830661bda655
work_keys_str_mv AT christopheramiller scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT brianswhite scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT nathanddees scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT malachigriffith scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT johnswelch scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT obilgriffith scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT ravivij scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT michaelhtomasson scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT timothyagraubert scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT matthewjwalter scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT matthewjellis scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT williamschierding scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT johnfdipersio scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT timothyjley scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT elainermardis scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT richardkwilson scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
AT liding scicloneinferringclonalarchitectureandtrackingthespatialandtemporalpatternsoftumorevolution
_version_ 1718414516660731904