Improving Convection Trigger Functions in Deep Convective Parameterization Schemes Using Machine Learning
Abstract Deficiencies in convection trigger functions, used in deep convection parameterizations in General Circulation Models (GCMs), have critical impacts on climate simulations. A novel convection trigger function is developed using the machine learning (ML) classification model XGBoost. The larg...
Guardado en:
Autores principales: | Tao Zhang, Wuyin Lin, Andrew M. Vogelmann, Minghua Zhang, Shaocheng Xie, Yi Qin, Jean‐Christophe Golaz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Geophysical Union (AGU)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/514db131478641698f3c9b4e958b6a6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Relationship Between Convective Clustering and Mean Tropical Climate in Aquaplanet Simulations
por: Max Popp, et al.
Publicado: (2020) -
Continuous Structural Parameterization: A Proposed Method for Representing Different Model Parameterizations Within One Structure Demonstrated for Atmospheric Convection
por: F. H. Lambert, et al.
Publicado: (2020) -
Impact of a New Cloud Microphysics Parameterization on the Simulations of Mesoscale Convective Systems in E3SM
por: Jingyu Wang, et al.
Publicado: (2021) -
Memory Properties in Cloud‐Resolving Simulations of the Diurnal Cycle of Deep Convection
por: C. L. Daleu, et al.
Publicado: (2020) -
Significant Amplification of Instantaneous Extreme Precipitation With Convective Self‐Aggregation
por: Nicolas A. Da Silva, et al.
Publicado: (2021)