Classification of sleep apnea based on EEG sub-band signal characteristics
Abstract Sleep apnea syndrome (SAS) is a disorder in which respiratory airflow frequently stops during sleep. Alterations in electroencephalogram (EEG) signal are one of the physiological changes that occur during apnea, and can be used to diagnose and monitor sleep apnea events. Herein, we proposed...
Enregistré dans:
Auteurs principaux: | Xiaoyun Zhao, Xiaohong Wang, Tianshun Yang, Siyu Ji, Huiquan Wang, Jinhai Wang, Yao Wang, Qi Wu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5150c1a3c0114271a2be02037537845d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
EEG microstate in obstructive sleep apnea patients
par: Xin Xiong, et autres
Publié: (2021) -
Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm
par: Jun Yang, et autres
Publié: (2021) -
Changes in headache characteristics with oral appliance treatment for obstructive sleep apnea
par: Ji Woon Park, et autres
Publié: (2021) -
Classification methods for ongoing EEG and MEG signals
par: BESSERVE,MICHEL, et autres
Publié: (2007) -
The prevalence and awareness of sleep apnea in patients suffering chronic pain: an assessment using the STOP-Bang sleep apnea questionnaire
par: Tentindo GS, et autres
Publié: (2018)