Classification of sleep apnea based on EEG sub-band signal characteristics
Abstract Sleep apnea syndrome (SAS) is a disorder in which respiratory airflow frequently stops during sleep. Alterations in electroencephalogram (EEG) signal are one of the physiological changes that occur during apnea, and can be used to diagnose and monitor sleep apnea events. Herein, we proposed...
Guardado en:
Autores principales: | Xiaoyun Zhao, Xiaohong Wang, Tianshun Yang, Siyu Ji, Huiquan Wang, Jinhai Wang, Yao Wang, Qi Wu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5150c1a3c0114271a2be02037537845d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
EEG microstate in obstructive sleep apnea patients
por: Xin Xiong, et al.
Publicado: (2021) -
Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm
por: Jun Yang, et al.
Publicado: (2021) -
Changes in headache characteristics with oral appliance treatment for obstructive sleep apnea
por: Ji Woon Park, et al.
Publicado: (2021) -
Classification methods for ongoing EEG and MEG signals
por: BESSERVE,MICHEL, et al.
Publicado: (2007) -
The prevalence and awareness of sleep apnea in patients suffering chronic pain: an assessment using the STOP-Bang sleep apnea questionnaire
por: Tentindo GS, et al.
Publicado: (2018)