Entropy-based metrics for predicting choice behavior based on local response to reward
Animals distribute their choices between alternative options according to relative reinforcement they receive from those options (matching law). Here, the authors propose metrics based on information theory that can predict this global behavioral rule based on local response to reward feedback.
Guardado en:
Autores principales: | Ethan Trepka, Mehran Spitmaan, Bilal A. Bari, Vincent D. Costa, Jeremiah Y. Cohen, Alireza Soltani |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/51544af4ad5344eab6ddd389142bf066 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An entropy-based metric for assessing the purity of single cell populations
por: Baolin Liu, et al.
Publicado: (2020) -
Entropy-Based Combined Metric for Automatic Objective Quality Assessment of Stitched Panoramic Images
por: Krzysztof Okarma, et al.
Publicado: (2021) -
Reactivation of associative structure specific outcome responses during prospective evaluation in reward-based choices
por: Maya Zhe Wang, et al.
Publicado: (2017) -
Reminders of past choices bias decisions for reward in humans
por: Aaron M. Bornstein, et al.
Publicado: (2017) -
The Feasibility of Information-Entropy-Based Behavioral Analysis for Detecting Environmental Barriers
por: Bogyeong Lee, et al.
Publicado: (2021)