On curvature tensors of Norden and metallic pseudo-Riemannian manifolds

We study some properties of curvature tensors of Norden and, more generally, metallic pseudo-Riemannian manifolds. We introduce the notion of J-sectional and J-bisectional curvature of a metallic pseudo-Riemannian manifold (M, J, g) and study their properties.We prove that under certain assumptions,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Blaga Adara M., Nannicini Antonella
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2019
Materias:
Acceso en línea:https://doaj.org/article/515747c623b9462680efa7cd26b0f576
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:515747c623b9462680efa7cd26b0f576
record_format dspace
spelling oai:doaj.org-article:515747c623b9462680efa7cd26b0f5762021-12-02T17:14:47ZOn curvature tensors of Norden and metallic pseudo-Riemannian manifolds2300-744310.1515/coma-2019-0008https://doaj.org/article/515747c623b9462680efa7cd26b0f5762019-01-01T00:00:00Zhttps://doi.org/10.1515/coma-2019-0008https://doaj.org/toc/2300-7443We study some properties of curvature tensors of Norden and, more generally, metallic pseudo-Riemannian manifolds. We introduce the notion of J-sectional and J-bisectional curvature of a metallic pseudo-Riemannian manifold (M, J, g) and study their properties.We prove that under certain assumptions, if the manifold is locally metallic, then the Riemann curvature tensor vanishes. Using a Norden structure (J, g) on M, we consider a family of metallic pseudo-Riemannian structures {Ja,b}a,b∈ℝ and show that for a ≠ 0, the J-sectional and J-bisectional curvatures of M coincide with the Ja,b-sectional and Ja,b-bisectional curvatures, respectively. We also give examples of Norden and metallic structures on ℝ2n.Blaga Adara M.Nannicini AntonellaDe Gruyterarticlenorden manifoldsmetallic pseudo-riemannian structuresj-sectional curvaturej-bisectional curvature53c1553c25MathematicsQA1-939ENComplex Manifolds, Vol 6, Iss 1, Pp 150-159 (2019)
institution DOAJ
collection DOAJ
language EN
topic norden manifolds
metallic pseudo-riemannian structures
j-sectional curvature
j-bisectional curvature
53c15
53c25
Mathematics
QA1-939
spellingShingle norden manifolds
metallic pseudo-riemannian structures
j-sectional curvature
j-bisectional curvature
53c15
53c25
Mathematics
QA1-939
Blaga Adara M.
Nannicini Antonella
On curvature tensors of Norden and metallic pseudo-Riemannian manifolds
description We study some properties of curvature tensors of Norden and, more generally, metallic pseudo-Riemannian manifolds. We introduce the notion of J-sectional and J-bisectional curvature of a metallic pseudo-Riemannian manifold (M, J, g) and study their properties.We prove that under certain assumptions, if the manifold is locally metallic, then the Riemann curvature tensor vanishes. Using a Norden structure (J, g) on M, we consider a family of metallic pseudo-Riemannian structures {Ja,b}a,b∈ℝ and show that for a ≠ 0, the J-sectional and J-bisectional curvatures of M coincide with the Ja,b-sectional and Ja,b-bisectional curvatures, respectively. We also give examples of Norden and metallic structures on ℝ2n.
format article
author Blaga Adara M.
Nannicini Antonella
author_facet Blaga Adara M.
Nannicini Antonella
author_sort Blaga Adara M.
title On curvature tensors of Norden and metallic pseudo-Riemannian manifolds
title_short On curvature tensors of Norden and metallic pseudo-Riemannian manifolds
title_full On curvature tensors of Norden and metallic pseudo-Riemannian manifolds
title_fullStr On curvature tensors of Norden and metallic pseudo-Riemannian manifolds
title_full_unstemmed On curvature tensors of Norden and metallic pseudo-Riemannian manifolds
title_sort on curvature tensors of norden and metallic pseudo-riemannian manifolds
publisher De Gruyter
publishDate 2019
url https://doaj.org/article/515747c623b9462680efa7cd26b0f576
work_keys_str_mv AT blagaadaram oncurvaturetensorsofnordenandmetallicpseudoriemannianmanifolds
AT nanniciniantonella oncurvaturetensorsofnordenandmetallicpseudoriemannianmanifolds
_version_ 1718381259743297536