Energy Consumption Patterns and Load Forecasting with Profiled CNN-LSTM Networks
By virtue of the steady societal shift to the use of smart technologies built on the increasingly popular smart grid framework, we have noticed an increase in the need to analyze household electricity consumption at the individual level. In order to work efficiently, these technologies rely on load...
Guardado en:
Autores principales: | Kareem Al-Saudi, Viktoriya Degeler, Michel Medema |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/516dbe9604ba49b9bbb2b45ed40f0ed0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Analysis of fault diagnosis of DC motors by power consumption pattern recognition
por: Hasan Shakir Majdi, et al.
Publicado: (2021) -
SUPERVISED PATTERN RECOGNITION TECHNIQUES FOR CLASSIFICATION OF EUCALYPTUS SPECIES FROM LEAVES NIR SPECTRA
por: CASTILLO,ROSARIO, et al.
Publicado: (2008) -
Forecasting vehicle accelerations using LSTM
por: Takeyuki ONO, et al.
Publicado: (2021) -
Towards Optimal Supercomputer Energy Consumption Forecasting Method
por: Jiří Tomčala
Publicado: (2021) -
Discovering Craniofacial Patterns Using Multivariate Cephalometric Data for Treatment Decision Making in Orthodontics
por: Araya-Díaz,Pamela, et al.
Publicado: (2013)