Energy Consumption Patterns and Load Forecasting with Profiled CNN-LSTM Networks
By virtue of the steady societal shift to the use of smart technologies built on the increasingly popular smart grid framework, we have noticed an increase in the need to analyze household electricity consumption at the individual level. In order to work efficiently, these technologies rely on load...
Enregistré dans:
Auteurs principaux: | Kareem Al-Saudi, Viktoriya Degeler, Michel Medema |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/516dbe9604ba49b9bbb2b45ed40f0ed0 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Analysis of fault diagnosis of DC motors by power consumption pattern recognition
par: Hasan Shakir Majdi, et autres
Publié: (2021) -
SUPERVISED PATTERN RECOGNITION TECHNIQUES FOR CLASSIFICATION OF EUCALYPTUS SPECIES FROM LEAVES NIR SPECTRA
par: CASTILLO,ROSARIO, et autres
Publié: (2008) -
Forecasting vehicle accelerations using LSTM
par: Takeyuki ONO, et autres
Publié: (2021) -
Towards Optimal Supercomputer Energy Consumption Forecasting Method
par: Jiří Tomčala
Publié: (2021) -
Discovering Craniofacial Patterns Using Multivariate Cephalometric Data for Treatment Decision Making in Orthodontics
par: Araya-Díaz,Pamela, et autres
Publié: (2013)