Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions
Abstract Recently, unconventional superconductivity having a zero-bias conductance peak is reported in doped topological Dirac semimetal (DSM) with lattice distortion. Motivated by the experiments, we theoretically study the possible symmetry-lowering lattice distortions and their effects on the eme...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/51868aedc676475b8b234f3da1e87fb8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:51868aedc676475b8b234f3da1e87fb8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:51868aedc676475b8b234f3da1e87fb82021-12-02T18:02:06ZEmergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions10.1038/s41598-021-97982-12045-2322https://doaj.org/article/51868aedc676475b8b234f3da1e87fb82021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97982-1https://doaj.org/toc/2045-2322Abstract Recently, unconventional superconductivity having a zero-bias conductance peak is reported in doped topological Dirac semimetal (DSM) with lattice distortion. Motivated by the experiments, we theoretically study the possible symmetry-lowering lattice distortions and their effects on the emergence of unconventional superconductivity in doped topological DSM. We find four types of symmetry-lowering lattice distortions that reproduce the crystal symmetries relevant to experiments from the group-theoretical analysis. Considering inter-orbital and intra-orbital electron density-density interactions, we calculate superconducting phase diagrams. We find that the lattice distortions can induce unconventional superconductivity hosting gapless surface Andreev bound states (SABS). Depending on the lattice distortions and superconducting pairing interactions, the unconventional inversion-odd-parity superconductivity can be either topological nodal superconductivity hosting a flat SABS or topological crystalline superconductivity hosting a gapless SABS. Remarkably, the lattice distortions increase the superconducting critical temperature, which is consistent with the experiments. Our work opens a pathway to explore and control pressure-induced topological superconductivity in doped topological semimetals.Sangmo CheonKi Hoon LeeSuk Bum ChungBohm-Jung YangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-25 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sangmo Cheon Ki Hoon Lee Suk Bum Chung Bohm-Jung Yang Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions |
description |
Abstract Recently, unconventional superconductivity having a zero-bias conductance peak is reported in doped topological Dirac semimetal (DSM) with lattice distortion. Motivated by the experiments, we theoretically study the possible symmetry-lowering lattice distortions and their effects on the emergence of unconventional superconductivity in doped topological DSM. We find four types of symmetry-lowering lattice distortions that reproduce the crystal symmetries relevant to experiments from the group-theoretical analysis. Considering inter-orbital and intra-orbital electron density-density interactions, we calculate superconducting phase diagrams. We find that the lattice distortions can induce unconventional superconductivity hosting gapless surface Andreev bound states (SABS). Depending on the lattice distortions and superconducting pairing interactions, the unconventional inversion-odd-parity superconductivity can be either topological nodal superconductivity hosting a flat SABS or topological crystalline superconductivity hosting a gapless SABS. Remarkably, the lattice distortions increase the superconducting critical temperature, which is consistent with the experiments. Our work opens a pathway to explore and control pressure-induced topological superconductivity in doped topological semimetals. |
format |
article |
author |
Sangmo Cheon Ki Hoon Lee Suk Bum Chung Bohm-Jung Yang |
author_facet |
Sangmo Cheon Ki Hoon Lee Suk Bum Chung Bohm-Jung Yang |
author_sort |
Sangmo Cheon |
title |
Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions |
title_short |
Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions |
title_full |
Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions |
title_fullStr |
Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions |
title_full_unstemmed |
Emergence of topological superconductivity in doped topological Dirac semimetals under symmetry-lowering lattice distortions |
title_sort |
emergence of topological superconductivity in doped topological dirac semimetals under symmetry-lowering lattice distortions |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/51868aedc676475b8b234f3da1e87fb8 |
work_keys_str_mv |
AT sangmocheon emergenceoftopologicalsuperconductivityindopedtopologicaldiracsemimetalsundersymmetryloweringlatticedistortions AT kihoonlee emergenceoftopologicalsuperconductivityindopedtopologicaldiracsemimetalsundersymmetryloweringlatticedistortions AT sukbumchung emergenceoftopologicalsuperconductivityindopedtopologicaldiracsemimetalsundersymmetryloweringlatticedistortions AT bohmjungyang emergenceoftopologicalsuperconductivityindopedtopologicaldiracsemimetalsundersymmetryloweringlatticedistortions |
_version_ |
1718378925986414592 |