Evolutionary design of optimal surface topographies for biomaterials

Abstract Natural evolution tackles optimization by producing many genetic variants and exposing these variants to selective pressure, resulting in the survival of the fittest. We use high throughput screening of large libraries of materials with differing surface topographies to probe the interactio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aliaksei Vasilevich, Aurélie Carlier, David A. Winkler, Shantanu Singh, Jan de Boer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5190613c9f6e4de2b27c572e7d398916
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5190613c9f6e4de2b27c572e7d398916
record_format dspace
spelling oai:doaj.org-article:5190613c9f6e4de2b27c572e7d3989162021-12-02T12:03:16ZEvolutionary design of optimal surface topographies for biomaterials10.1038/s41598-020-78777-22045-2322https://doaj.org/article/5190613c9f6e4de2b27c572e7d3989162020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78777-2https://doaj.org/toc/2045-2322Abstract Natural evolution tackles optimization by producing many genetic variants and exposing these variants to selective pressure, resulting in the survival of the fittest. We use high throughput screening of large libraries of materials with differing surface topographies to probe the interactions of implantable device coatings with cells and tissues. However, the vast size of possible parameter design space precludes a brute force approach to screening all topographical possibilities. Here, we took inspiration from Nature to optimize materials surface topographies using evolutionary algorithms. We show that successive cycles of material design, production, fitness assessment, selection, and mutation results in optimization of biomaterials designs. Starting from a small selection of topographically designed surfaces that upregulate expression of an osteogenic marker, we used genetic crossover and random mutagenesis to generate new generations of topographies.Aliaksei VasilevichAurélie CarlierDavid A. WinklerShantanu SinghJan de BoerNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Aliaksei Vasilevich
Aurélie Carlier
David A. Winkler
Shantanu Singh
Jan de Boer
Evolutionary design of optimal surface topographies for biomaterials
description Abstract Natural evolution tackles optimization by producing many genetic variants and exposing these variants to selective pressure, resulting in the survival of the fittest. We use high throughput screening of large libraries of materials with differing surface topographies to probe the interactions of implantable device coatings with cells and tissues. However, the vast size of possible parameter design space precludes a brute force approach to screening all topographical possibilities. Here, we took inspiration from Nature to optimize materials surface topographies using evolutionary algorithms. We show that successive cycles of material design, production, fitness assessment, selection, and mutation results in optimization of biomaterials designs. Starting from a small selection of topographically designed surfaces that upregulate expression of an osteogenic marker, we used genetic crossover and random mutagenesis to generate new generations of topographies.
format article
author Aliaksei Vasilevich
Aurélie Carlier
David A. Winkler
Shantanu Singh
Jan de Boer
author_facet Aliaksei Vasilevich
Aurélie Carlier
David A. Winkler
Shantanu Singh
Jan de Boer
author_sort Aliaksei Vasilevich
title Evolutionary design of optimal surface topographies for biomaterials
title_short Evolutionary design of optimal surface topographies for biomaterials
title_full Evolutionary design of optimal surface topographies for biomaterials
title_fullStr Evolutionary design of optimal surface topographies for biomaterials
title_full_unstemmed Evolutionary design of optimal surface topographies for biomaterials
title_sort evolutionary design of optimal surface topographies for biomaterials
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/5190613c9f6e4de2b27c572e7d398916
work_keys_str_mv AT aliakseivasilevich evolutionarydesignofoptimalsurfacetopographiesforbiomaterials
AT aureliecarlier evolutionarydesignofoptimalsurfacetopographiesforbiomaterials
AT davidawinkler evolutionarydesignofoptimalsurfacetopographiesforbiomaterials
AT shantanusingh evolutionarydesignofoptimalsurfacetopographiesforbiomaterials
AT jandeboer evolutionarydesignofoptimalsurfacetopographiesforbiomaterials
_version_ 1718394746768982016