Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS

Mass spectrometry-based proteomics typically relies on highly sensitive nano-flow liquid chromatography (LC) but this can reduce robustness and reproducibility. Here, the authors show that micro-flow LC enables robust and reproducible high-throughput proteomics experiments at a very moderate loss of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yangyang Bian, Runsheng Zheng, Florian P. Bayer, Cassandra Wong, Yun-Chien Chang, Chen Meng, Daniel P. Zolg, Maria Reinecke, Jana Zecha, Svenja Wiechmann, Stephanie Heinzlmeir, Johannes Scherr, Bernhard Hemmer, Mike Baynham, Anne-Claude Gingras, Oleksandr Boychenko, Bernhard Kuster
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/51978dfc79c64bbfbbf6af243fbb23c2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:51978dfc79c64bbfbbf6af243fbb23c2
record_format dspace
spelling oai:doaj.org-article:51978dfc79c64bbfbbf6af243fbb23c22021-12-02T17:31:24ZRobust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS10.1038/s41467-019-13973-x2041-1723https://doaj.org/article/51978dfc79c64bbfbbf6af243fbb23c22020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13973-xhttps://doaj.org/toc/2041-1723Mass spectrometry-based proteomics typically relies on highly sensitive nano-flow liquid chromatography (LC) but this can reduce robustness and reproducibility. Here, the authors show that micro-flow LC enables robust and reproducible high-throughput proteomics experiments at a very moderate loss of sensitivity.Yangyang BianRunsheng ZhengFlorian P. BayerCassandra WongYun-Chien ChangChen MengDaniel P. ZolgMaria ReineckeJana ZechaSvenja WiechmannStephanie HeinzlmeirJohannes ScherrBernhard HemmerMike BaynhamAnne-Claude GingrasOleksandr BoychenkoBernhard KusterNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yangyang Bian
Runsheng Zheng
Florian P. Bayer
Cassandra Wong
Yun-Chien Chang
Chen Meng
Daniel P. Zolg
Maria Reinecke
Jana Zecha
Svenja Wiechmann
Stephanie Heinzlmeir
Johannes Scherr
Bernhard Hemmer
Mike Baynham
Anne-Claude Gingras
Oleksandr Boychenko
Bernhard Kuster
Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS
description Mass spectrometry-based proteomics typically relies on highly sensitive nano-flow liquid chromatography (LC) but this can reduce robustness and reproducibility. Here, the authors show that micro-flow LC enables robust and reproducible high-throughput proteomics experiments at a very moderate loss of sensitivity.
format article
author Yangyang Bian
Runsheng Zheng
Florian P. Bayer
Cassandra Wong
Yun-Chien Chang
Chen Meng
Daniel P. Zolg
Maria Reinecke
Jana Zecha
Svenja Wiechmann
Stephanie Heinzlmeir
Johannes Scherr
Bernhard Hemmer
Mike Baynham
Anne-Claude Gingras
Oleksandr Boychenko
Bernhard Kuster
author_facet Yangyang Bian
Runsheng Zheng
Florian P. Bayer
Cassandra Wong
Yun-Chien Chang
Chen Meng
Daniel P. Zolg
Maria Reinecke
Jana Zecha
Svenja Wiechmann
Stephanie Heinzlmeir
Johannes Scherr
Bernhard Hemmer
Mike Baynham
Anne-Claude Gingras
Oleksandr Boychenko
Bernhard Kuster
author_sort Yangyang Bian
title Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS
title_short Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS
title_full Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS
title_fullStr Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS
title_full_unstemmed Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS
title_sort robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow lc–ms/ms
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/51978dfc79c64bbfbbf6af243fbb23c2
work_keys_str_mv AT yangyangbian robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT runshengzheng robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT florianpbayer robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT cassandrawong robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT yunchienchang robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT chenmeng robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT danielpzolg robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT mariareinecke robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT janazecha robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT svenjawiechmann robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT stephanieheinzlmeir robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT johannesscherr robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT bernhardhemmer robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT mikebaynham robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT anneclaudegingras robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT oleksandrboychenko robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
AT bernhardkuster robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms
_version_ 1718380611781001216