Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS
Mass spectrometry-based proteomics typically relies on highly sensitive nano-flow liquid chromatography (LC) but this can reduce robustness and reproducibility. Here, the authors show that micro-flow LC enables robust and reproducible high-throughput proteomics experiments at a very moderate loss of...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/51978dfc79c64bbfbbf6af243fbb23c2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:51978dfc79c64bbfbbf6af243fbb23c2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:51978dfc79c64bbfbbf6af243fbb23c22021-12-02T17:31:24ZRobust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS10.1038/s41467-019-13973-x2041-1723https://doaj.org/article/51978dfc79c64bbfbbf6af243fbb23c22020-01-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-13973-xhttps://doaj.org/toc/2041-1723Mass spectrometry-based proteomics typically relies on highly sensitive nano-flow liquid chromatography (LC) but this can reduce robustness and reproducibility. Here, the authors show that micro-flow LC enables robust and reproducible high-throughput proteomics experiments at a very moderate loss of sensitivity.Yangyang BianRunsheng ZhengFlorian P. BayerCassandra WongYun-Chien ChangChen MengDaniel P. ZolgMaria ReineckeJana ZechaSvenja WiechmannStephanie HeinzlmeirJohannes ScherrBernhard HemmerMike BaynhamAnne-Claude GingrasOleksandr BoychenkoBernhard KusterNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yangyang Bian Runsheng Zheng Florian P. Bayer Cassandra Wong Yun-Chien Chang Chen Meng Daniel P. Zolg Maria Reinecke Jana Zecha Svenja Wiechmann Stephanie Heinzlmeir Johannes Scherr Bernhard Hemmer Mike Baynham Anne-Claude Gingras Oleksandr Boychenko Bernhard Kuster Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS |
description |
Mass spectrometry-based proteomics typically relies on highly sensitive nano-flow liquid chromatography (LC) but this can reduce robustness and reproducibility. Here, the authors show that micro-flow LC enables robust and reproducible high-throughput proteomics experiments at a very moderate loss of sensitivity. |
format |
article |
author |
Yangyang Bian Runsheng Zheng Florian P. Bayer Cassandra Wong Yun-Chien Chang Chen Meng Daniel P. Zolg Maria Reinecke Jana Zecha Svenja Wiechmann Stephanie Heinzlmeir Johannes Scherr Bernhard Hemmer Mike Baynham Anne-Claude Gingras Oleksandr Boychenko Bernhard Kuster |
author_facet |
Yangyang Bian Runsheng Zheng Florian P. Bayer Cassandra Wong Yun-Chien Chang Chen Meng Daniel P. Zolg Maria Reinecke Jana Zecha Svenja Wiechmann Stephanie Heinzlmeir Johannes Scherr Bernhard Hemmer Mike Baynham Anne-Claude Gingras Oleksandr Boychenko Bernhard Kuster |
author_sort |
Yangyang Bian |
title |
Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS |
title_short |
Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS |
title_full |
Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS |
title_fullStr |
Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS |
title_full_unstemmed |
Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC–MS/MS |
title_sort |
robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow lc–ms/ms |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/51978dfc79c64bbfbbf6af243fbb23c2 |
work_keys_str_mv |
AT yangyangbian robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT runshengzheng robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT florianpbayer robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT cassandrawong robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT yunchienchang robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT chenmeng robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT danielpzolg robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT mariareinecke robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT janazecha robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT svenjawiechmann robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT stephanieheinzlmeir robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT johannesscherr robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT bernhardhemmer robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT mikebaynham robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT anneclaudegingras robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT oleksandrboychenko robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms AT bernhardkuster robustreproducibleandquantitativeanalysisofthousandsofproteomesbymicroflowlcmsms |
_version_ |
1718380611781001216 |