Edible pectin film added with peptides from jackfruit leaves obtained by high-hydrostatic pressure and pepsin hydrolysis
Jackfruit (Artocarpus heterophyllus Lam.) is an evergreen tree that produces a high waste of leaves. This study evaluated the obtention of peptides from jackfruit leaves using pancreatin and pepsin, their antifungal activity, and their effect on pectin films. The protein content was 7.64 ± 0.12 g/10...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/519794a36f5946a988ba64f8d19fd184 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Jackfruit (Artocarpus heterophyllus Lam.) is an evergreen tree that produces a high waste of leaves. This study evaluated the obtention of peptides from jackfruit leaves using pancreatin and pepsin, their antifungal activity, and their effect on pectin films. The protein content was 7.64 ± 0.12 g/100 g of jackfruit fresh leaves. Pancreatin produced a higher yield than pepsin in the obtention of peptides (p ≤ 0.05). However, peptides obtained after 2 h by pepsin hydrolysis (Pep-P) had six essential amino acids and inhibited > 99% of mycelial growth and spore germination of Colletotrichum gloeosporioides. Pectin films with Pep-P showed a slight brown color, lower thickness, water vapor permeability, and moisture content, as well as higher thermal stability and better inhibition properties against C. gloeosporioides than pectin films without Pep-P (p ≤ 0.05). Pectin films added with Pep-P from jackfruit leaf could be a green alternative to anthracnose control in tropical fruits. |
---|