Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function

The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shilpi Jain, Rahul Goyal, Praveen Agarwal, Antonella Lupica, Clemente Cesarano
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/51a938d109a041be81284fe11c942166
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:51a938d109a041be81284fe11c942166
record_format dspace
spelling oai:doaj.org-article:51a938d109a041be81284fe11c9421662021-11-25T18:17:24ZSome Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function10.3390/math92229442227-7390https://doaj.org/article/51a938d109a041be81284fe11c9421662021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2944https://doaj.org/toc/2227-7390The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative formulas for these extended functions are derived. We also introduce the logarithmic convexity and some important inequalities for extended beta function.Shilpi JainRahul GoyalPraveen AgarwalAntonella LupicaClemente CesaranoMDPI AGarticleclassical Euler beta functiongamma functionGauss hypergeometric functionconfluent hypergeometric functionMittag-Leffler functionMathematicsQA1-939ENMathematics, Vol 9, Iss 2944, p 2944 (2021)
institution DOAJ
collection DOAJ
language EN
topic classical Euler beta function
gamma function
Gauss hypergeometric function
confluent hypergeometric function
Mittag-Leffler function
Mathematics
QA1-939
spellingShingle classical Euler beta function
gamma function
Gauss hypergeometric function
confluent hypergeometric function
Mittag-Leffler function
Mathematics
QA1-939
Shilpi Jain
Rahul Goyal
Praveen Agarwal
Antonella Lupica
Clemente Cesarano
Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function
description The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative formulas for these extended functions are derived. We also introduce the logarithmic convexity and some important inequalities for extended beta function.
format article
author Shilpi Jain
Rahul Goyal
Praveen Agarwal
Antonella Lupica
Clemente Cesarano
author_facet Shilpi Jain
Rahul Goyal
Praveen Agarwal
Antonella Lupica
Clemente Cesarano
author_sort Shilpi Jain
title Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function
title_short Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function
title_full Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function
title_fullStr Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function
title_full_unstemmed Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function
title_sort some results of extended beta function and hypergeometric functions by using wiman’s function
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/51a938d109a041be81284fe11c942166
work_keys_str_mv AT shilpijain someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction
AT rahulgoyal someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction
AT praveenagarwal someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction
AT antonellalupica someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction
AT clementecesarano someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction
_version_ 1718411378843189248