Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function
The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/51a938d109a041be81284fe11c942166 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:51a938d109a041be81284fe11c942166 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:51a938d109a041be81284fe11c9421662021-11-25T18:17:24ZSome Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function10.3390/math92229442227-7390https://doaj.org/article/51a938d109a041be81284fe11c9421662021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2944https://doaj.org/toc/2227-7390The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative formulas for these extended functions are derived. We also introduce the logarithmic convexity and some important inequalities for extended beta function.Shilpi JainRahul GoyalPraveen AgarwalAntonella LupicaClemente CesaranoMDPI AGarticleclassical Euler beta functiongamma functionGauss hypergeometric functionconfluent hypergeometric functionMittag-Leffler functionMathematicsQA1-939ENMathematics, Vol 9, Iss 2944, p 2944 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
classical Euler beta function gamma function Gauss hypergeometric function confluent hypergeometric function Mittag-Leffler function Mathematics QA1-939 |
spellingShingle |
classical Euler beta function gamma function Gauss hypergeometric function confluent hypergeometric function Mittag-Leffler function Mathematics QA1-939 Shilpi Jain Rahul Goyal Praveen Agarwal Antonella Lupica Clemente Cesarano Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function |
description |
The main aim of this research paper is to introduce a new extension of the Gauss hypergeometric function and confluent hypergeometric function by using an extended beta function. Some functional relations, summation relations, integral representations, linear transformation formulas, and derivative formulas for these extended functions are derived. We also introduce the logarithmic convexity and some important inequalities for extended beta function. |
format |
article |
author |
Shilpi Jain Rahul Goyal Praveen Agarwal Antonella Lupica Clemente Cesarano |
author_facet |
Shilpi Jain Rahul Goyal Praveen Agarwal Antonella Lupica Clemente Cesarano |
author_sort |
Shilpi Jain |
title |
Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function |
title_short |
Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function |
title_full |
Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function |
title_fullStr |
Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function |
title_full_unstemmed |
Some Results of Extended Beta Function and Hypergeometric Functions by Using Wiman’s Function |
title_sort |
some results of extended beta function and hypergeometric functions by using wiman’s function |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/51a938d109a041be81284fe11c942166 |
work_keys_str_mv |
AT shilpijain someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction AT rahulgoyal someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction AT praveenagarwal someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction AT antonellalupica someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction AT clementecesarano someresultsofextendedbetafunctionandhypergeometricfunctionsbyusingwimansfunction |
_version_ |
1718411378843189248 |