Computing highly correlated positions using mutual information and graph theory for G protein-coupled receptors.
G protein-coupled receptors (GPCRs) are a superfamily of seven transmembrane-spanning proteins involved in a wide array of physiological functions and are the most common targets of pharmaceuticals. This study aims to identify a cohort or clique of positions that share high mutual information. Using...
Guardado en:
Autores principales: | Sarosh N Fatakia, Stefano Costanzi, Carson C Chow |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/51bd1cfad5ce416488bd94b296ed560a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Computational prediction of alanine scanning and ligand binding energetics in G-protein coupled receptors.
por: Lars Boukharta, et al.
Publicado: (2014) -
Special Issue on Mathematical Computation in Combinatorics and Graph Theory
por: Farahani,Mohammad Reza
Publicado: (2020) -
A computationally designed water-soluble variant of a G-protein-coupled receptor: the human mu opioid receptor.
por: Jose Manuel Perez-Aguilar, et al.
Publicado: (2013) -
The origin and evolution of G protein-coupled receptor kinases.
por: Arcady Mushegian, et al.
Publicado: (2012) -
High capacity in G protein-coupled receptor signaling
por: Amiran Keshelava, et al.
Publicado: (2018)