Predicting aptamer sequences that interact with target proteins using an aptamer-protein interaction classifier and a Monte Carlo tree search approach.
Oligonucleotide-based aptamers, which have a three-dimensional structure with a single-stranded fragment, feature various characteristics with respect to size, toxicity, and permeability. Accordingly, aptamers are advantageous in terms of diagnosis and treatment and are materials that can be produce...
Guardado en:
Autores principales: | Gwangho Lee, Gun Hyuk Jang, Ho Young Kang, Giltae Song |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/51ef32496859423ea43c1f84b68ec2eb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
AptaNet as a deep learning approach for aptamer–protein interaction prediction
por: Neda Emami, et al.
Publicado: (2021) - Aptamers
-
Prediction of aptamer-target interacting pairs with pseudo-amino acid composition.
por: Bi-Qing Li, et al.
Publicado: (2014) -
Aptamer-based optical manipulation of protein subcellular localization in cells
por: Sitao Xie, et al.
Publicado: (2020) -
LPI-EnEDT: an ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification
por: Lihong Peng, et al.
Publicado: (2021)