Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations.
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-controlling enzyme in the mevalonate pathway which involved in biosynthesis of cholesterol and other isoprenoids. This enzyme catalyzes the conversion of HMG-CoA to mevalonate and is regarded as a drug target to treat hypercholesterole...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/51fe6cef964249ec9dafd72edd9f96b7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:51fe6cef964249ec9dafd72edd9f96b7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:51fe6cef964249ec9dafd72edd9f96b72021-11-18T08:39:55ZExploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations.1932-620310.1371/journal.pone.0083496https://doaj.org/article/51fe6cef964249ec9dafd72edd9f96b72013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24386216/?tool=EBIhttps://doaj.org/toc/1932-62033-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-controlling enzyme in the mevalonate pathway which involved in biosynthesis of cholesterol and other isoprenoids. This enzyme catalyzes the conversion of HMG-CoA to mevalonate and is regarded as a drug target to treat hypercholesterolemia. In this study, ten qualitative pharmacophore models were generated based on chemical features in active inhibitors of HMGR. The generated models were validated using a test set. In a validation process, the best hypothesis was selected based on the statistical parameters and used for virtual screening of chemical databases to find novel lead candidates. The screened compounds were sorted by applying drug-like properties. The compounds that satisfied all drug-like properties were used for molecular docking study to identify their binding conformations at active site of HMGR. The final hit compounds were selected based on docking score and binding orientation. The HMGR structures in complex with the hit compounds were subjected to 10 ns molecular dynamics simulations to refine the binding orientation as well as to check the stability of the hits. After simulation, binding modes including hydrogen bonding patterns and molecular interactions with the active site residues were analyzed. In conclusion, four hit compounds with new structural scaffold were suggested as novel and potent HMGR inhibitors.Minky SonAyoung BaekSugunadevi SakkiahChanin ParkShalini JohnKeun Woo LeePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 12, p e83496 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Minky Son Ayoung Baek Sugunadevi Sakkiah Chanin Park Shalini John Keun Woo Lee Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations. |
description |
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is a rate-controlling enzyme in the mevalonate pathway which involved in biosynthesis of cholesterol and other isoprenoids. This enzyme catalyzes the conversion of HMG-CoA to mevalonate and is regarded as a drug target to treat hypercholesterolemia. In this study, ten qualitative pharmacophore models were generated based on chemical features in active inhibitors of HMGR. The generated models were validated using a test set. In a validation process, the best hypothesis was selected based on the statistical parameters and used for virtual screening of chemical databases to find novel lead candidates. The screened compounds were sorted by applying drug-like properties. The compounds that satisfied all drug-like properties were used for molecular docking study to identify their binding conformations at active site of HMGR. The final hit compounds were selected based on docking score and binding orientation. The HMGR structures in complex with the hit compounds were subjected to 10 ns molecular dynamics simulations to refine the binding orientation as well as to check the stability of the hits. After simulation, binding modes including hydrogen bonding patterns and molecular interactions with the active site residues were analyzed. In conclusion, four hit compounds with new structural scaffold were suggested as novel and potent HMGR inhibitors. |
format |
article |
author |
Minky Son Ayoung Baek Sugunadevi Sakkiah Chanin Park Shalini John Keun Woo Lee |
author_facet |
Minky Son Ayoung Baek Sugunadevi Sakkiah Chanin Park Shalini John Keun Woo Lee |
author_sort |
Minky Son |
title |
Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations. |
title_short |
Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations. |
title_full |
Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations. |
title_fullStr |
Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations. |
title_full_unstemmed |
Exploration of virtual candidates for human HMG-CoA reductase inhibitors using pharmacophore modeling and molecular dynamics simulations. |
title_sort |
exploration of virtual candidates for human hmg-coa reductase inhibitors using pharmacophore modeling and molecular dynamics simulations. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/51fe6cef964249ec9dafd72edd9f96b7 |
work_keys_str_mv |
AT minkyson explorationofvirtualcandidatesforhumanhmgcoareductaseinhibitorsusingpharmacophoremodelingandmoleculardynamicssimulations AT ayoungbaek explorationofvirtualcandidatesforhumanhmgcoareductaseinhibitorsusingpharmacophoremodelingandmoleculardynamicssimulations AT sugunadevisakkiah explorationofvirtualcandidatesforhumanhmgcoareductaseinhibitorsusingpharmacophoremodelingandmoleculardynamicssimulations AT chaninpark explorationofvirtualcandidatesforhumanhmgcoareductaseinhibitorsusingpharmacophoremodelingandmoleculardynamicssimulations AT shalinijohn explorationofvirtualcandidatesforhumanhmgcoareductaseinhibitorsusingpharmacophoremodelingandmoleculardynamicssimulations AT keunwoolee explorationofvirtualcandidatesforhumanhmgcoareductaseinhibitorsusingpharmacophoremodelingandmoleculardynamicssimulations |
_version_ |
1718421500647702528 |