Machine Learning Analysis for Quantitative Discrimination of Dried Blood Droplets
Abstract One of the most interesting and everyday natural phenomenon is the formation of different patterns after the evaporation of liquid droplets on a solid surface. The analysis of dried patterns from blood droplets has recently gained a lot of attention, experimentally and theoretically, due to...
Guardado en:
Autores principales: | Lama Hamadeh, Samia Imran, Martin Bencsik, Graham R. Sharpe, Michael A. Johnson, David J. Fairhurst |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5201995e6a44419cb1776e4ee2471625 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Wetting transitions in droplet drying on soft materials
por: Julia Gerber, et al.
Publicado: (2019) -
Deposition and drying dynamics of liquid crystal droplets
por: Zoey S. Davidson, et al.
Publicado: (2017) -
Blood banking in living droplets.
por: Josh Samot, et al.
Publicado: (2011) -
Deep learning encodes robust discriminative neuroimaging representations to outperform standard machine learning
por: Anees Abrol, et al.
Publicado: (2021) -
Machine learning approach for discrimination of genotypes based on bright-field cellular images
por: Godai Suzuki, et al.
Publicado: (2021)