Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods
Machine learning methods enable the electronic nose (E-Nose) for precise odor identification with both qualitative and quantitative analysis. Advanced machine learning methods are crucial for the E-Nose to gain high performance and strengthen its capability in many applications, including robotics,...
Guardado en:
Autores principales: | Zhenyi Ye, Yuan Liu, Qiliang Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/521eaab819374fd09d65dc2e63ca3a9a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of Saccharomyces cerevisiae strains for alcoholic fermentation by discriminant factorial analysis on electronic nose signals
por: Calderon-Santoyo,Montserrat, et al.
Publicado: (2010) -
Sensing Performance of Thermal Electronic Noses: A Comparison between ZnO and SnO<sub>2</sub> Nanowires
por: Matteo Tonezzer, et al.
Publicado: (2021) -
Development of Portable E-Nose System for Fast Diagnosis of Whitefly Infestation in Tomato Plant in Greenhouse
por: Shaoqing Cui, et al.
Publicado: (2021) -
Accuracy of the Electronic Nose Breath Tests in Clinical Application: A Systematic Review and Meta-Analysis
por: Hsiao-Yu Yang, et al.
Publicado: (2021) -
ELECTRONIC NOSE A NOVEL TOOL FOR QUALITY AND PROCESS CONTROL IN THE FOOD INDUSTRY
por: Martha C. QUICAZÁN S., et al.
Publicado: (2011)