Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods
Machine learning methods enable the electronic nose (E-Nose) for precise odor identification with both qualitative and quantitative analysis. Advanced machine learning methods are crucial for the E-Nose to gain high performance and strengthen its capability in many applications, including robotics,...
Enregistré dans:
Auteurs principaux: | Zhenyi Ye, Yuan Liu, Qiliang Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/521eaab819374fd09d65dc2e63ca3a9a |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Identification of Saccharomyces cerevisiae strains for alcoholic fermentation by discriminant factorial analysis on electronic nose signals
par: Calderon-Santoyo,Montserrat, et autres
Publié: (2010) -
Sensing Performance of Thermal Electronic Noses: A Comparison between ZnO and SnO<sub>2</sub> Nanowires
par: Matteo Tonezzer, et autres
Publié: (2021) -
Development of Portable E-Nose System for Fast Diagnosis of Whitefly Infestation in Tomato Plant in Greenhouse
par: Shaoqing Cui, et autres
Publié: (2021) -
Accuracy of the Electronic Nose Breath Tests in Clinical Application: A Systematic Review and Meta-Analysis
par: Hsiao-Yu Yang, et autres
Publié: (2021) -
ELECTRONIC NOSE A NOVEL TOOL FOR QUALITY AND PROCESS CONTROL IN THE FOOD INDUSTRY
par: Martha C. QUICAZÁN S., et autres
Publié: (2011)