Holographic optical field recovery using a regularized untrained deep decoder network
Abstract Image reconstruction using minimal measured information has been a long-standing open problem in many computational imaging approaches, in particular in-line holography. Many solutions are devised based on compressive sensing (CS) techniques with handcrafted image priors or supervised deep...
Guardado en:
Autores principales: | Farhad Niknam, Hamed Qazvini, Hamid Latifi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5220a627c5834911aa441d30da39a13e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The Association of Fatigue With Decreasing Regularity of Locomotion During an Incremental Test in Trained and Untrained Healthy Adults
por: Marco Rabuffetti, et al.
Publicado: (2021) -
On Architecture Selection for Linear Inverse Problems with Untrained Neural Networks
por: Yang Sun, et al.
Publicado: (2021) -
Instability of holographic superfluids in optical lattice
por: Peng Yang, et al.
Publicado: (2021) -
Regular AdS black holes holographic heat engines in a benchmarking scheme
por: H. El Moumni, et al.
Publicado: (2021) -
Change Detection in Hyperdimensional Images Using Untrained Models
por: Sudipan Saha, et al.
Publicado: (2021)